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HIGHLIGHTS 

 Choice modelers often use composites to represent groups of alternatives, but this 
practice may introduce arbitrary changes to choice-share predictions.  

 We find that composite specification can cause more variation in predicted shares than 
parameter uncertainty in models without alternative-specific constants (ASCs). 

 We find that ASCs can mitigate or eliminate this variation in some, but not all, 
counterfactual scenarios. 

 We identify correction factors for models using composites to predict choice shares in 
counterfactual scenarios consistent with those from corresponding models that use 
disaggregated elemental alternatives.  
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ABSTRACT 
Vehicle choice modelers often use composite alternatives, which are simplified representations 
of a larger, diverse group of vehicle options—a practice known as choice set aggregation. 
Although this practice has been justified by computational tractability and data constraints, it can 
introduce arbitrary changes to choice-share predictions. We isolate and characterize the 
implications of using composite vehicles for choice prediction, given exogenously determined 
model parameters. We first identify correction factors needed for composite models to predict 
choice shares that are consistent with those from models that use the full set of disaggregated 
elemental alternatives. We then assess the distortion of choice-share predictions under various 
composite specifications and partial corrections using two case studies based on models in the 
literature used in transportation and energy policymaking: (1) we examine a logit model without 
alternative-specific constants (ASCs) and find that the distortion in share predictions due to 
composite specification is substantial and can be larger than variation due to parameter 
uncertainty; (2) we examine counterfactual predictions of a nested logit model with ASCs based 
on the NEMS and LVChoice models and find that composite models using ASCs can mitigate or 
eliminate distortion in some, but not all, counterfactual scenarios. In particular, the distortion is 
larger when the scenario significantly affects the differences in elemental membership or utility 
heterogeneity between composite groups. We provide explicit correction factors for composite 
models with and without ASCs that can be used to take advantage of the tractability of composite 
models while ensuring that their choice-share predictions exactly match those of their 
corresponding elemental models in counterfactual and forecasting scenarios. 
 
Keywords: choice set aggregation, aggregation of alternatives, vehicle choice model, composite 
vehicles, multinomial logit, nested logit, mixed logit 
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1 INTRODUCTION 
Discrete choice models are widely used to estimate consumer preferences for transportation 
options and to simulate choices under various scenarios. For example, vehicle choice models 
(VCMs) can be used to predict how vehicle sales might respond to a subsidy program (Greene et 
al., 2005) or how well alternative-fuel vehicles may sell given improvements in their 
performance (Stephens et al., 2014). These predictions are used in counterfactual policy studies 
(Bento et al., 2009; Goldberg, 1998; Greene et al., 2005; Jacobsen, 2013), as well as projections 
and forecasts (Brownstone et al., 2000; Liu and Lin, 2017). 

Vehicle choice models vary considerably in the level of detail at which they represent the 
market. Some studies represent alternatives in a choice set at a granular level of detail (Brooker 
et al., 2015; Bunch and Brownstone, 2013; Greene and Liu, 2012; Klier and Linn, 2012). These 
alternatives are known as elemental alternatives1 (Ben-Akiva and Lerman, 1985), and we refer to 
models that represent the choice set using elemental alternatives as “elemental models”. For 
example, in Brooker et al. (2015), the US automotive market is represented by over 400 
alternatives at the make-model-trim level (e.g.: GMC Sierra 2500HD, Kia Forte LX, etc.). Other 
models use composite alternatives, which represent groups of elemental alternatives (e.g.: 
grouped by size class, technology, and/or fuel type) (Bento et al., 2009; Brownstone et al., 2000; 
Goldberg, 1998; Xie and Lin, 2017). The use of composites in choice modeling is also known as 
choice set aggregation2, which is one of several methods to reduce the choice set (Ben-Akiva and 
Lerman, 1985; McFadden, 1978). We refer to models that represent the choice set using 
composites as “composite models”. For example, the VCMs in the National Energy Modeling 
System (NEMS) (EIA, 2010) and the related LVChoice model (Birky, 2012), which are used to 
inform policymaking, aggregate vehicles by fuel type (e.g.: gasoline, electric, etc.) and vehicle 
class (e.g.: small car, large SUV, etc.). Each group of vehicles of a specific fuel type and vehicle 
class is modeled using a single generic composite vehicle whose attributes are intended to 
represent the group. As a result, the market of alternatives is represented by a dramatically 
reduced choice set of only 45 composite vehicle alternatives in LVChoice. Figure 1 shows an 
illustrative example of how granular elemental alternatives are grouped and represented using 
composites in VCMs. 
 

                                                 
1 More precisely, we define an element as a product profile (vector of attributes) that represents a group of 
alternatives with identical observed attributes (e.g.: a red Ford Focus SE and a blue Ford Focus SE have identical 
observed attributes if color is not observed) and a composite as a product profile that represents a group of 
alternatives that differ in observed attributes (e.g.: the Ford Focus SE and Ford Focus ST differ on price and fuel 
economy). See the literature review section for more detail. 
2  Choice set aggregation, or aggregation of alternatives, should not be confused with the aggregation of individual 
consumers into groups. To avoid possible confusion, we primarily refer to the “use of composites” instead of 
“aggregation”.    
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(a) These elemental alternatives represent the 
market at the disaggregated make-model-trim level. 

 (b) These composite alternatives represent the 
market at the aggregated fuel-type level. 

Figure 1: Examples of choice sets using (a) elemental alternatives, and (b) composite 
alternatives (adapted from manufacturer website images, with permission). 

 
Some studies use composite vehicles in the process of estimating model parameters, 

while other studies use composite vehicles only for predicting choice shares. We label these the 
“explanatory literature” and the “predictive literature,” respectively, following Haaf et al. (2016). 
Table 1 provides a detailed comparison.  

In the explanatory literature, parameter estimation is often conducted on composite 
vehicles because sales data are typically not available at the disaggregated elemental level; 
however, there is concern that the use of composites can cause an “aggregation bias” for model 
parameters, and researchers have worked to quantify and mitigate this bias (Brownstone and Li, 
2017; Habibi et al., 2017; Spiller, 2012; Wong et al., 2018). Researchers in other domains—
particularly spatial and locational choice—also find that the use of composites affects both 
model estimation and subsequent prediction results (Haener et al., 2004; Parsons and Hauber, 
1998; Parsons and Needelman, 1992).   

In contrast, the predictive literature focuses on simulating choice shares under a range of 
scenarios. This literature adopts parameter estimates from other studies or using expert judgment 
(e.g.: willingness-to-pay and elasticity estimates that are presumed to be unbiased). Applications 
and examples of these models are shown in Error! Reference source not found. and Table 2.3 
Many of these studies choose to use composites to model counterfactual and forecast scenarios. 
Here, the implications of choice set aggregation are decoupled from the issue of parameter bias. 
The predictive literature lacks studies characterizing the influence of composite vehicles on 
choice predictions, so it is not known how much this practice might be arbitrarily influencing 
results.  

 

                                                 
3 Vehicle choice models in the predictive literature are frequently used for policy analysis, as summarized in Table 1. 
Several scholars summarize advantages of this approach for supporting policy decisions in a choice model peer 
review for the US Environmental Protection Agency (SRA International et al., 2012). 
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We focus on the predictive literature to isolate the effect of composites on prediction, and 
we address the following research questions: 

1. How does the use of composite alternatives in place of elemental alternatives affect VCM 
choice predictions in theory and in practice? 

2. How much does composite specification distort predictions relative to other sources of 
error, uncertainty, or variation? 

3. How might composites be specified to produce choice predictions that match a 
corresponding elemental model? 

 
We begin by reviewing the variety of choice set aggregation practices used in the 

literature. We then develop theory regarding the use of composites in choice prediction for 
several types of choice models and identify “correction factors”4 that allow composite models to 
predict choice shares that are consistent with those from corresponding elemental models. We 
then construct two case studies simulating choice predictions for elemental and composite choice 
sets based on VCMs used in the literature and in policymaking. In these case studies, we analyze 
the variation in simulation results due to differences in composite specification and compare it to 
variation in simulation results caused by other sources of uncertainty and variation in VCMs.  
 

 
 
 

                                                 
4 The term “correction factor” indicates that the composite model is “corrected” to match a corresponding elemental 
model, following the terminology in the literature (Ben-Akiva and Lerman, 1985). It does not imply that the 
corresponding elemental model itself is “correct” or that choice predictions from the elemental model would 
necessarily match observations. 
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Table 1: Types of Vehicle Choice Modeling Literature that Use Composite Alternatives 
 

 Explanatory literature Predictive literature 

Objective 

Estimate model parameters that explain 
preferences and choices, and in some studies, 
use the resulting model to predict choice share 
in counterfactual scenarios  

Predict choice share in counterfactual 
scenarios and/or forecasts 

Method 
Estimate preference parameters � by fitting a 
choice model to observed choices 

Simulate choice shares �� for a range of 
scenarios by computing market shares with a 
choice model 

Process 
���, �� → �, ξ�  
���, �, ξ�  → ��� (some studies) 

���, ��, � → ξ� (some studies) 
���, ξ�, � → ��� 

Source of 
preference 
parameters � 

Estimated using ���, ��  
Exogenous (literature/expert-informed) based 
on willingness to pay for attributes and price 
elasticities 

Source of ASC ξ Estimated simultaneously 
Calibrated post-hoc to observed shares �� in a 
baseline scenario 

Correction factors 
used in utility 
specification of 
composite 

Size factor sometimes included.  
Heterogeneity factor not used, except in 
literature comparing different composite 
specifications (bottom row). 
Can be approximated. 

Size factor (or variant) often included.  
Heterogeneity factor not used.  
May require computation of elemental utilities 
and elemental ASCs or can be approximated. 

Sample literature 
using composite 
alternatives 

Goldberg (1998); Brownstone et al. (2000); 
Train & Winston (2007); Bento et al. (2009); 
Shiau et al. (2009); Jacobsen (2013)  

Michalek et al. (2004); EIA (2010); Birky 
(2012); Greene et al. (2014); Xie & Lin (2017) 

Sample literature 
using elemental 
alternatives 

Klier & Linn (2012); Bunch & Brownstone 
(2013); Whitefoot et al. (2017) 

Greene et al. (2005); Bunch et al. (2011); 
Greene & Liu (2012); Whitefoot & Skerlos 
(2012); Brooker et al. (2015) 

Example 
applications 

Analyses of impacts and effects of fuel 
economy standards (Goldberg, 1998; Klier & 
Linn, 2012; Bunch & Brownstone, 2013; 
Jacobsen, 2013), gasoline taxes (Bento et al., 
2009), automotive industry competitiveness 
(Train & Winston, 2007) 

DOE VTO program analysis (Stephens et al., 
2014), NRC Transitions to Alternative 
Vehicles & Fuels study (Greene et al., 2014), 
EIA Annual Energy Outlook (Lynes et al., 
2017), EPA and DOT evaluating potential use 
of VCMs in regulatory rulemaking (Helfand et 
al., 2015; SRA International et al., 2012) 

Literature 
comparing 
between models 
with different 
composite 
specifications 

Vehicle choice: Spiller (2012); Habibi et al. 
(2017); Wong, Brownstone, & Bunch (2018)  
Spatial choice: Parsons & Needelman (1992); 
Feather (1994); Kaoru et al. (1995); Ferguson 
& Kanaroglou (1997); Parsons & Hauber 
(1998); Haener et al. (2004) 

This study 

Notes: ���: vehicle attributes of composite alternative k in scenario t, ��: observed market share of composite 
alternative k, ���: predicted choice share of composite alternative k in scenario t.  
Refer to Haaf et al. (2016) for further discussion regarding explanatory and predictive literature.  
Refer to Table 2 for further detail and references regarding specific studies that use correction factors. 
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2 LITERATURE REVIEW 
Several recent studies have characterized the effects of specific modeling assumptions on vehicle 
choice model predictions, such as utility specification, functional form, preference heterogeneity, 
and error distribution (Haaf et al., 2016, 2014; Helfand et al., 2015; Klier and Linn, 2012; 
Stephens, 2014; Stephens et al., 2017). We focus on the effects of choice set aggregation and the 
use of composites. 

Before reviewing the literature on composites, it is instructive to explicitly define the 
terms composite and elemental alternatives, as the use of these terms varies across the literature. 
For the purposes of this study, we define an element as a product profile (vector of attributes) 
that represents a group of alternatives with identical observed attributes and a composite as a 
product profile that represents a group of alternatives that differ in observed attributes. Whether a 
product profile at a given level of detail is considered an element or a composite depends on the 
observed attributes included in the utility function of the choice model. For example, many 
vehicle choice models include attributes such as price and fuel economy. Vehicle descriptions at 
the make-model level (e.g.: Ford Focus) describe groups of variants (e.g.: Ford Focus SE, Ford 
Focus ST, etc.) that differ substantially in price and fuel economy, so we classify a choice model 
using alternatives at the make-model level as using composites. In contrast, if a choice model 
described vehicles at the make-model-trim level (e.g.: Ford Focus SE) within which all variants 
of each profile (e.g.: red Ford Focus SE, blue Ford Focus SE, etc.) have the same price and fuel 
economy, then we classify it as using elements. However, if the “color” attribute were to be 
added as an attribute in the utility function of this choice model, then the make-model-trim level 
would be considered to be at the composite level because each profile represents a group of 
alternatives that varies in one of the observed attributes (color).5  
 
2.1 Use of Composites in Vehicle Choice Models 
Table 2 demonstrates how much VCMs used for counterfactual analysis or forecasting can vary 
in the level of detail at which they represent the market. VCMs in the top section of Table 2 
represent the automotive market using only tens or hundreds of composite alternatives based on 
combinations of size class, powertrains, and fuel type—creating simplified and abstracted 
representations of the market. Each composite represents many design variants in the real 
market. On the other end of the spectrum, VCMs in the bottom section of Table 2 simulate 
hundreds or thousands of vehicle alternatives at the make-model-engine or make-model-trim 
level to represent a much more detailed set of design variants in the market. 

There are several reasons why a modeler may choose to represent vehicle alternatives as 
composites. One reason is computational costs and tractability (Brownstone et al., 2000; 
Goldberg, 1998; McFadden, 1978). Increasing computational power in recent years has 
somewhat mitigated this need. However, computational constraints may still force modelers to 
use composites when the VCM is integrated with an interdependent supply-side model that 

                                                 
5 In vehicle choice modeling practice, make-model-trim profiles and series-subseries profiles are not necessarily 
strictly elements, because each represents a group of variants that differ in options packages (e.g.: premium stereo, 
navigation system) that affect observed attributes (e.g.: price). Nevertheless, the make-model-trim level and the 
series-subseries level are typically treated as elements in practice (any variation in observed attributes of alternatives 
below these levels is typically ignored) due to limited data availability, and we follow this convention here. 
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iteratively determines the attributes of vehicle options and their sales (Bunch et al., 2011; 
Goldberg, 1998; Jacobsen, 2013; Shiau et al., 2009).  

Other reasons modelers use composites are data constraints and a desired level of 
resolution in predictions. For example, modelers may lack data to specify attributes for each 
elemental alternative in a future scenario (Helfand et al., 2015) and may only be interested in 
predictions made at a composite level to focus on their research question of interest or to avoid a 
sense of false precision (Greene and Liu, 2012). Modelers also may not be willing to predict 
market shares in detail and may prefer to stay abstract in their predictions, citing the politically 
sensitive and controversial nature of manufacturer-level predictions (Keefe, 2014; Xie and Lin, 
2017). Finally, modeling the market entry or exit of specific design variants may not be within 
the scope of research (Klier and Linn, 2012).  

Choice set aggregation can also be used to deal with commonality in unobserved 
attributes of elemental alternatives that would conflict with the assumption of independent and 
identically distributed error terms in logit models. This is discussed in more detail by McFadden 
(1978). 

Despite the advantages of using composites discussed above, there are several arguments 
against their use. Composite alternatives are abstractions with hypothetical attributes that are not 
actually available on the market and therefore may inaccurately represent choices. In the 
locational choice literature, Kanaroglou and Ferguson (1996) argue that elemental alternatives 
are the “fundamental disaggregate units considered by choice-makers in the decision process” 
while composites are often defined out of necessity but do not correspond with consumer 
choices. Haener et al. (2004) describe the disaggregate version of their choice model to be closer 
to how they believe decisions are made. In vehicle choice, Spiller (2012) and Wong, 
Brownstone, & Bunch (2018) both describe composites as “misspecification” of the “true” 
choice set. 

Furthermore, the use of composites may ignore the heterogeneity of their underlying 
elemental alternatives, which may be important to model explicitly, especially for vehicle choice 
(Greene and Liu, 2012; Spiller, 2012). The consumer vehicle market includes a large amount of 
vehicle design variation, and there is uncertainty in future technology, fuel-type, and segment 
availability and popularity. Baum and Luria (2016) describe recent shifts towards higher-end, 
more luxurious, and heavier design variants in the automotive market. Wong et al. (2018) cite 
increasing variation in fuel economy and other attributes in recent years due to fuel price 
variations, stringent fuel economy standards, and technological advances. Composites may 
inadequately reflect the impact of scenarios or policies that affect passenger vehicle options 
heterogeneously, such as those based on fuel economy or battery capacity. Several studies 
(Brooker et al., 2015; Bunch and Brownstone, 2013; Greene and Liu, 2012; Klier and Linn, 
2012; Whitefoot and Skerlos, 2012) cite this as motivation to simulate at an elemental level.6 
  

                                                 
6 For example, Brooker et al. (2015) argue that the Toyota Prius hybrid, a particularly high-selling vehicle, would be 
inadequately represented by a generic composite hybrid vehicle. Other examples of elemental alternatives driving 
the sales of the composite category, particularly alternative-fuel vehicles: the BMW i3 extended-range electric 
vehicle with a 100-mile electric range plus gasoline range extender and the Tesla Model S 85 electric vehicle  with a 
300-mile range and no extender may not be well represented by the composites in LVChoice and earlier versions of 
the NEMS model (Birky, 2012; Greene and Chin, 2000), which include a Plug-In Hybrid Electric Vehicle (PHEV) 
with a 40-mile range and EVs with 100- and 200-mile ranges. 
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Table 2: Examples of Vehicle Choice Models that Predict Counterfactual or Future Market 
Shares Using Different Representations of the US Light-Duty Vehicle Market 

a) Vehicle Choice Models Simulating at Composite Level with Aggregation 

Publication  
[Model Name] 

Number of 
Simulated 

Alternatives 

Granularity of  
Alternatives 

Type 
of 
Choice 
Modela 

Source of 
Preference 
Parameters
b 

Source 
of ASCsb 

Correction 
Factors 

Michalek, Papalambros, & 
Skerlos (2004) 

5-20  5-10 makes x 1-2 models each L Exo – – 

Shiau, Michalek, & Hendrickson 
(2009) 

10 10 makes (mid-size only) MXL Est – – 

Greene, Park, & Liu (2014) 
[LAVE-Trans] 

10 5 fuel types x 2 size classes NL Exo Cal Size 

Xie & Lin (2017) [MA3T variant] 12-28 
(3 fuel economy variants + 4 
fuel types) x 4 size classes 

NL Exo Cal Size 

Goldberg (1998) 18 9 size classes x 2 origins NL Est – – 

Brownstone, Bunch, & Train 
(2000) 

26-37 
12 sizes x 4 fuel types x 2 
origins x 2 cost levels 

L & 
MXL 

Est Est Size 

Liu & Lin (2017) [MA3T variant] 20 10 fuel types x 2 size classes NL Exo Cal Size 

Brownstone et al. (1996) 36 14 size classes x 4 fuel types 
L & 
NL 

Est Est – 

Birky (2012) [LVChoice] 45c 9 fuel types x 5 size classes NL Exo Cal Size 

Vyas et al. (2012) [SimAGENT] 54 9 body types x 6 vintages 
MDC
EV 

Est Est – 

Bento et al. (2009) 59 
7 makes x 10 size classes x 5 
ages 

MXL Est – – 

Levinson et al. (2017) 
[ParaChoice] 

100 20 fuel types x 5 size classes NL Exo Cal Size 

EIA (2010) [NEMS CVCC] 132c 11 fuel types x 12 size classes NL Exo Cal Size 

Train & Winston (2007) 200 Make/model MXL Est Est Size 

Harrison et al. (2007) [NERA 
NVMM] 

200+ Make/model NL Exo Cal – 

Goldberg (1995) 228 Make/model NL Est – – 

Jacobsen (2013) 287 
7 makes x 10 size classes x 5 
ages 

MXL Est – – 

Bunch & Mahmassani (2009) 
[CARBITS 2] 

350 
12 sizes x prestige x model 
years 

L & 
NL 

Est Cal Size 

b) Vehicle Choice Models Simulating at Elemental Level (or with Minimal Aggregation) 

Brooker et al. (2015) [ADOPT] 400+ 
Make/model/trim/engine 
options 

MXL Est Cal – 

Whitefoot & Skerlos (2012) 473 Make/model/engine L Exo Cal – 

Whitefoot, Fowlie, & Skerlos 
(2017) 

471 Make/model/engine MXL Est Est – 

Bunch et al. (2011) [CARBITS 3] 800+ Make/model/engine NL Est Cal – 

Greene et al. (2005)  831 Make/carline/configuration NL Exo Cal – 

Greene (2009) 867 Make/model/engine NL Exo Cal – 

Greene & Liu (2012) [CVCM for 
EPA] 

~1000 Make/model/configuration NL Exo Cal – 

Bunch & Brownstone (2013)  
[model for DOT Volpe] 

1213 Make/model/nameplate NL Est Est – 

Klier & Linn (2012) 1819 
Make/model/engine x model 
years 

NL Est Est – 
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Notes: In this table, the models in which preference parameters are estimated prior to simulation fall into the 
explanatory literature category, and the models where the parameters are exogenously determined and/or calibrated 
fall into the predictive literature category. 
a  L: Multinomial Logit; MXL: Mixed Logit; NL: Nested Logit; MDCEV: Multiple Discrete-Continuous Extreme 
Value  
b Exo: exogenous; Est: estimated; Cal: calibrated 
c  These models simulate each size class in its own separate choice model, and so there are only 9-11 fuel type 
composites in the choice model simulations for each assumed market segment. 

 
 
2.2 Composite Specification 
Modelers using composites must make assumptions about how they are specified. Composites 
are commonly specified using the arithmetic average or sales-weighted average of the attributes 
of their constituent elemental alternatives. However, while the use of averages to represent 
composites may be intuitive, the choice set aggregation literature has described a need for 
modelers to “correct” such models by accounting for the group size and utility heterogeneity of 
the elemental alternatives being represented by composites (Ben-Akiva and Lerman, 1985; 
Kitamura et al., 1979; Lerman, 1975; McFadden, 1978).7 These correction factors serve to align 
composite model results with corresponding elemental model results.  

In practice, though, composite VCMs vary in how they specify composites, and no 
consistent application of correction factors has emerged in the literature. Goldberg (1998) and 
Jacobsen (2013) use composites with average attributes and no correction factors. Leiby and 
Rubin (1997) and Greene and Chin (2000) derived a "Make-Model Availability" (MMA) factor 
that is meant to represent the “value of diversity of choice” to the consumer and has subsequently 
been widely used in other VCMs used in policymaking (Birky, 2012; EIA, 2010; Greene et al., 
2014; Greene and Liu, 2012; Liu and Lin, 2017). Brownstone et al. (2000) and Train and 
Winston (2007) include the number of vehicle models in their utility specifications, describing it 
as a factor accounting for “product line externality,” while Wolinetz and Axsen (2016) include 
the number of electric vehicle model offerings as part of an “availability constraint.” Tables 1 
and Table 2 show summaries of correction factor usage in the literature. 

In this paper, we show how composites affect choice-share predictions through both 
mathematical derivation and simulation case studies. We explicitly identify the correction factors 
that allow composite models to be consistent with elemental-model choice predictions, thereby 
allowing modelers to exploit the advantages of composite models while eliminating the 
discrepancies between composite and elemental choice predictions. 
 

                                                 
7 Later studies (Feather, 1994; Ferguson and Kanaroglou, 1997; Haener et al., 2004; Kaoru et al., 1995; Parsons and 
Needelman, 1992) examined how composite use and correction factors could affect spatial and locational choice 
model results. We note that while spatial and locational choices may be sufficiently described by composites with 
the average attributes of carefully defined homogeneous groups of geographically proximate elemental choices, the 
vehicle market of make-model-trim alternatives may not be adequately modeled by composites without accounting 
for group size and heterogeneity. Wong et al. (2018) and Brownstone and Li (2017) analyzed various specifications, 
including the McFadden (1978) approximate correction factor on parameter estimation results but not on predicted 
choice probabilities. Habibi et al. (2017) also compare several specifications and correction factors but focus on the 
impact on estimation. Refer to Table 1 for a summary. 
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3 THEORY 
We examine a general discrete choice model containing a set of composite vehicle alternatives 
� and compare its predicted choice probabilities to those of a corresponding choice model 
containing the set of elemental vehicle alternatives �. Each composite alternative, � ∈ �, 
represents a subset of the elemental alternatives �� ⊆ �. The subsets �� ∀� ∈ � partition the set 

� (∪�∈� �� = � and  �� ∩ ��′ = ∅ ∀� ∈ �, �
′

∈ �\�). We define �� to be the predicted market-

level probability of consumers choosing alternative j, or predicted choice share. The choice 
shares predicted by the composite model �� ∀� ∈ � will vary depending on how the attributes 
of the composites are specified (e.g.: average or sales-weighted average of the attributes of the 
subsumed elements). We define Δ�� as the difference between a given composite model’s 
predicted choice probability �� and the sum of the elemental model’s predicted choice 
probabilities for the alternatives that � represents, ∑ ���∈��

. Specifically, 

 

Δ�� = �� − � ��

�∈��

(1) 

 
This difference provides a metric for comparing composite model specifications used in 

the predictive literature, and we examine some conditions under which Δ�� = 0.8 We begin with 
models that exclude alternative-specific constants (ASCs) and later generalize to those that 
include ASCs. 
 
3.1 Models Without Alternative-Specific Constants (ASCs) 
Studies using choice models that lack ASCs include Goldberg (1998), Bento et al. (2009), Shiau 
et al. (2009), and Jacobsen (2013). For a general random-utility discrete-choice model without 
ASCs, consumers choose the alternative with the highest utility. The utility ��  of each alternative 

� can be separated into two components: �� = �� + ��. The first term ��  is the consumer utility 

derived from vehicle attributes observed by the modeler, henceforth referred to as observed 
utility.9 The second term �� represents unobserved random error. Given ��  for all alternatives and 

a distribution for ��, the choice share �� (Pr��� ≥ ���  ∀�� ∈ ��) can be computed with a 

multidimensional integral for the elemental choice set � and for the composite choice set �:  
 

�� = � � � … � ��(�)��¬�

��������

�����

��������

�����

�

�

�����

���;    �� = � � � … � ��(�)��¬�

��������

�����

��������

�����

�

�

�����

��� (2) 

 
where � = |�|, � = |�|, ��(�) is the probability density function for the vector of random error 
terms in the composite model, ��(�) is the probability density function for the vector of random 

error terms in the elemental model, and ¬ represents “all except”, so that ��¬� = �������� …  
���������� … ������, and ��¬� = �������� … ���������� … ������. The difference between 

the composite and elemental model choice-share predictions Δ�� for generic error distribution 

                                                 
8 As we will see, Δ�� = 0 when the appropriate “correction factors” are used in the composite utilities.  
9 For simplicity of illustration, consumer heterogeneity, including consumer-specific attributes such as demographic 
information that would affect utility, is ignored here. 
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assumptions is computed using Eq.(1) and Eq.(2). This expression provides a measure of the 
inconsistency between the elemental model and any given composite model specification. 

To find a composite model specification that is consistent with the elemental model for a 
given error distribution assumption, we set Δ�� = 0 ∀� ∈ � and solve for the utility of the 
composite10. For the particular cases where both the elemental model and the composite model 
are specified as logit, nested logit, or mixed logit, a closed-form expression or kernel solution 
exists. We derive each of these cases in Appendix A and summarize results in Table 3. The 
solutions share a similar form for the utility of the composite involving the Logarithm of the Sum 
of the Exponential (LSE) of the utilities of the elemental alternatives. The LSE specification can 
be decomposed, as shown by McFadden (1978) and by Ben-Akiva and Lerman (1985),11 into (1) 
the base composite utility (often an average or weighted average of the elements represented by 
the composite), (2) the group “size correction factor,” which is a factor that accounts for the 
number of elements represented by the composite, and (3) the “heterogeneity correction 
factor12,” which is a factor that accounts for differences in utility of elemental alternatives from 
the base composite utility. When both of these correction factors are combined with the base 
composite utility, they are mathematically equivalent to the LSE and therefore predict choice 
probabilities from the composite model that are consistent with those that the elemental model 
would predict for the corresponding group of vehicles. As shown in Table 2, while some vehicle 
choice models have applied a size correction factor (or a variant), no vehicle choice model using 
composites in the predictive literature has applied these correction factors in full13. We 
characterize the implications of this practice.

                                                 
10 A solution may or may not exist, depending on the pair of assumptions about the error term distributions. As 
demonstrated in Parsons and Needelman (1992) based on McFadden (1978), a solution consistent with random 
utility maximization exists where both error terms are iid Type I Extreme Value.  
11 The size and heterogeneity correction factors were first discussed and derived by Lerman (1975), McFadden 
(1978), and Ben-Akiva and Lerman (1985) for logit and nested logit models. In this paper, we extend the derivation 
to make explicit how these concepts apply to mixed-logit models and to models that include ASCs.  
12 The exponential function in the heterogeneity correction factor emphasizes alternatives in �� with higher utility. 
Ben-Akiva and Lerman (1985) observe that the derivative of the heterogeneity correction factor shows sensitivity to 
elemental alternatives with high choice probabilities. 
13 One study in the explanatory literature, Habibi et al. (2017), does use full correction factors to make predictions, 
but focuses on comparing parameter estimates. 
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Table 3: Composite Specifications for Models Without ASCs to Produce Share Predictions 
Consistent with a Corresponding Elemental Model 
 Observed utility of 

composites required for 
Δ�� = 0 ∀� ∈ � 

Base 
composite 
utility14,15 

Size 
correction 

factor 

Heterogeneity 
correction 

factor 

Logit 
�� = ln � � exp����

�∈��

� 

    = �̅� + ln(��) + ln(��) 

�̅� = �′��� �� = |��| �� =
∑ exp ��′��� − ������∈��

��

 

Nested 
Logit 

�� = �� ln � � exp �
��

��
�

�∈��

� 

    = �̅� + �� ln(��) + �� ln(��) 

�̅� = �′��� �� = |��| 
�� =

∑ exp �
�′��� − ����

��
��∈��

��

 

Mixed 
Logit 

��� = ln � � exp�����

�∈��

� 

    = �̅�� + ln(��) + ln����� 

�̅�� = ��′��� �� = |��| ��� =
∑ exp ���′��� − ������∈��

��

 

Notes: Derivations are available in Appendix A and B. �: “observed utility,” utility derived from attributes observed 
by the modeler; �̅�: base composite utility; �: nest parameter, which reflects the degree of independence in 
unobserved utility among alternatives in the nests; �: vector of vehicle attributes; ���: vector of attributes of the 
composite alternative; �: vector of consumer preference parameters. For the case of mixed logit (which includes 
latent-class logit as a special case), the model parameters are random variables and therefore the base composite 
utility and the heterogeneity correction factor are also random variables. We identify random variables with the ~ 

symbol. ��: random vector of consumer preference parameters, which may be continuous (e.g.: normal) or discrete 
(e.g.: different values for individual consumer segments, as in latent-class models).

                                                 
14 We show the case where utility is linear-in-parameters for illustration. Note that when utility is linear in 
parameters, a composite alternative defined using the average value for each attribute will have average utility. 
Other utility models could be used so long as the heterogeneity correction factor is adjusted accordingly. 
15 In the literature, the base composite’s attribute vector is often calculated as an average or weighted average (��� =
∑ �����∈��

��⁄ , where the �’s are some weights e.g.: sales of each alternative) (Goldberg, 1998; Bento et al., 2009). 

However, in other models, the base composite’s attributes are based on other methods or expert judgment, for 
example in the case of forecasts (EIA, 2010). The correction factors apply for any specification of ���. 
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3.2 Models With Alternative-Specific Constants (ASCs) 
Many vehicle choice models (Brownstone et al., 2000; Bunch et al., 2011; Train and Winston, 
2007; Xie and Lin, 2017) use ASCs, which are utility parameters estimated for each choice 
alternative. Each alternative’s ASC can be thought of, under certain conditions, as representing 
the average utility across consumers that is associated with the alternative’s unobserved 
attributes. With ASCs, the utility for each choice alternative in the model is represented by �� =

�′�� + �� + ��. In the literature and in practice, ASCs are determined by two different 

approaches: (1) by estimating them together with other parameters and (2) by fitting them post-
hoc as calibration constants (Haaf et al., 2016). VCMs in the explanatory literature typically 
estimate ASCs simultaneously with other choice model parameters as part of an effort to control 
for omitted variable bias (Guevara, 2015; Haaf et al., 2016; Klier and Linn, 2012; Train and 
Winston, 2007; Whitefoot et al., 2017), whereas VCMs in the predictive literature use post-hoc 
calibration to estimate ASCs as calibration constants (Birky, 2012; Greene et al., 2005; Xie and 
Lin, 2017). The correction factors we present are agnostic about the approach of estimating 
ASCs. In the literature, ASCs have been estimated/calibrated for elemental alternatives using 
elemental sales data (which we refer to as E-ASCs) as well as for composite alternatives using 
composite-level sales data (C-ASCs). Refer to Tables 1 and 2 for examples.  

To differentiate the baseline scenario in which ASCs are estimated or calibrated to 
existing sales data from the counterfactual or forecast scenario where shares are predicted, we 
introduce the subscript � ∈ � and define � = 0 as the baseline scenario where observed shares 
are available and ASCs are estimated (� ≠ 0 implies a counterfactual or forecast scenario).  
Similar to our procedure in the previous section, to find a composite model specification that is 
consistent with the elemental model, we set Δ��� = 0  ∀� ∈ �, � ∈ � and solve for the utility of 
the composite for the cases of logit, nested logit, and mixed logit when E-ASCs and C-ASCs are 
present. Derivations are provided in Appendix C, and the results are summarized in Table 4.  

Here, the LSE solution is decomposed into a base composite utility and correction factors 
that are functions of both the E-ASCs and the C-ASCs.16 For any E-ASCs and C-ASCs 
determined by any method, these correction factors will adjust the composite model to make 
predictions consistent with the elemental model. To be meaningful, the E-ASCs are generally 
estimated or calibrated using observed data, but any value for the C-ASCs will do. A convenient 
choice when constructing a new composite model is to set �� = 0  ∀� ∈ � and simplify the 
equations in Table 4 accordingly, but for models that have already been calibrated at the 
composite level, the general correction factors in Table 4 allow a modeler to adjust the composite 
specification so that choice probabilities are consistent with an associated elemental model. This 
is advantageous, for example, when counterfactual or forecast scenarios involve computationally 
intensive operations where the use of composites can reduce computation time or when 
sensitivity analysis for forecasts is more tractable with fewer parameters.

                                                 
16 For simplicity, we show ASCs as being estimated in the baseline scenario � = 0 using observed choices and 
assumed constant across counterfactual and forecast scenarios (no scenario subscript). Some models make projected 
adjustments to ASCs for forecast scenarios (e.g.: Birky, 2012; EIA, 2010). This practice is discussed by Haaf et al. 
(2016) and Stephens et al. (2017). The correction factors in Table 4 hold for any choice of ASCs for any scenario.  
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Table 4: Composite Specifications for Models With ASCs to Produce Share Predictions Consistent With a Corresponding 
Elemental Model 
 Observed utility of composites 

required for 
Δ��� = 0 ∀� ∈ �, � ∈ � 

Base 
composite 
utility14,15 

Size 
correction 

factor 

Heterogeneity17 
correction 

factor 

Logit 
��� = ln � � exp���� + ���

�∈���

� − �� 

         = �̅�� + ln(���) + ln(���) − �� 

�̅�� = �′���� + �� ��� = |���| 

���

=
∑ exp ��′���� − ����� + ��� − �����∈���

���
 

Neste
d 
Logit 

��� = ��� ln � � exp �
��� + ��

���
�

�∈���

�

− �� 
         = �̅�� +
��� ln(���) + ��� ln(���) − �� 

�̅�� = �′���� + �� ��� = |���| 

���

=

∑ exp �
�′���� − ����� +

���
�∈���

���

Mixed 
Logit 

���� = ln � � exp����� + ���

�∈���

� − �� 

        = �̅��� + ln(���) + ln������ − �� 

�̅��� = ��′����  + �� ��� = |���| 

����

=
∑ exp ���′���� − ����� + ��� − �����∈���

���
 

Notes: Derivations are available in Appendix C. ��: Elemental-Alternative-Specific-Constant (E-ASC) (estimated or calibrated to observed choice data in 

scenario � = 0); ��: Composite-Alternative-Specific-Constant (C-ASC) (may take any value (e.g.: zero) or be estimated or calibrated to observed choice data in 
scenario � = 0)16; �̅��: base utility of composite � in scenario t14,15; �: nest parameter, which reflects the degree of independence in unobserved utility among 

alternatives in the nests; �: vector of vehicle attributes; ���: vector of attributes of the composite alternative; �: vector of consumer preference parameters. ��: 
random vector of consumer preference parameters, which may be continuous (e.g.: normal) or discrete (e.g.: different values for individual consumer segments, 
as in latent-class models)

                                                 
17 Heterogeneity correction factor here in Table 4 refers to heterogeneity of observed utility including E-ASC (in contrast to heterogeneity correction factor for 
models without ASC)  



Yip, Michalek, Whitefoot   17 

 
 

For the typical case where ASCs are fit to data from a single market,18 the ASCs can 
reduce share error for both the elemental model and the composite model to zero in the baseline 
scenario � = 0. But, importantly, these ASCs do not necessarily lead to the same result in 
counterfactual or forecast scenarios. Specifically, we define: 
 

Δ��� = ��� − ���   ∀� ∈ � (3) 

 

Δ��� = ��� − ��� = ��� − � ���

�∈��

   ∀� ∈ � (4) 

 
Where ��� is the observed share of alternative � in scenario � = 0; Δ��� is the difference between 

predicted elemental choice probabilities and observed choice shares for alternative � in scenario 
� = 0, and Δ��� is the difference between predicted composite choice probabilities and observed 
choice share for composite � in scenario � =  0. Choice share for composite k is defined as the 
sum of the observed shares for the alternatives represented by composite �.  

Calibration of �� enforces that ��� = ��� (and therefore Δ��� = 0) ∀� ∈ �. Similarly, if the 

composite model is independently calibrated to sales data at the composite level, such as in Birky 
(2012), calibration of �� enforces that ��� = ∑ ����∈��

 and Δ��� = 0 ∀� ∈ �. Because both the 

elemental model and the composite model are calibrated to match the same baseline scenario 
sales data, they will have consistent choice probabilities in that scenario: Δ��� = 0. But without 
complete correction in the composite model, the elemental and composite models with ASCs 
may nevertheless produce different choice probabilities in counterfactual or forecast scenarios: 
Δ��� ≠ 0.  

Table 5 summarizes these implications, and Figure 2 summarizes the comparison of the 
roles of E-ASCs, C-ASCs, and correction factors: E-ASCs and C-ASCs force the elemental 
model and composite model choice shares, respectively, to match the observed market shares 
(and therefore match one another) in the baseline scenario where ASCs are determined, whereas 
the correction factors ensure that the elemental model and composite model match one another 
for all scenarios. 
 
Table 5: Summary of the Implications of ASCs and Correction Factors 
  Baseline 

scenario 
Counterfactual 

scenario 
Without ASCs Without complete correction Δ� ≠ 0 Δ� ≠ 0 

With complete correction Δ� = 0 Δ� = 0 
With ASCs Without complete correction Δ� = 0 Δ� ≠ 0 

With complete correction Δ� = 0 Δ� = 0 
 
 
 

                                                 
18 In some models, ASCs for alternatives that appear in multiple observed markets (e.g.: model years or choice sets) 
are held constant across those markets to estimate ASCs as fixed effects and control for omitted variables (Guevara, 
2015). We focus our narrative here on the case of a single market, where ASCs provide enough degrees of freedom 
to allow choice model shares to match observed shares and can be used in conjunction with instrumental variables to 
control for omitted variables (Haaf et al., 2016).  
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Figure 2: Illustration of the roles of correction factors, E-ASCs, and C-ASCs in choice 
modeling. Arrows indicate the direction of adjustment, so that the predictions from the 
model at each arrow’s tail are adjusted to match those from the models at the arrow’s 
head. 
 

Our correction factors, which extend prior work to explicitly address models with ASCs, 
allow models with vehicle composites to produce choice shares consistent with a corresponding 
model with elemental alternatives, even in counterfactual or forecast scenarios. 
 
4 SIMULATION CASE STUDIES 
To characterize the impact of composite specification on choice modeling predictions in practice, 
we construct two case studies. In Case 1, we isolate the effect of composite specification on 
choice model share prediction for a simple logit model without ASCs and compare its magnitude 
relative to parameter uncertainty. In Case 2, we construct a nested logit model based on the 
NEMS and LVChoice models, with and without ASCs, and we explore the effect of the use of 
composites and correction factors on counterfactual predictions. We compute choice 
probabilities using a series of models that predict choice shares using different specifications of 
the utility of composite vehicles. These model specifications are listed in Table 6. 
 
Table 6: Model Specifications in Case Study Simulations 

Composite 
Model 
Specification 

Components Included in the Utility of the Composite 

C1a 
Base composite utility using the arithmetic averages of constituent vehicle 
utilities (�̅� = ∑ ���∈��

��⁄ ) 

C1w Base composite utility using sales-weighted averages (�̅� = ∑ �����∈��
��⁄ ) 

C2a 
Base composite utility based on arithmetic averages plus the size correction 
factor (Table 3, 4) 

Elemental Model 
Choice Predictions 

����  ∀� ∈ �� 

Composite Model 
Choice Predictions 
(���  ∀� ∈ �) 

Observed  
Choice Shares 
 (��� ∀� ∈ � & 

  ��� = ∑ ����∈��
∀� ∈ �)  

Correction factors 
ensure 
��� = ∑ ����∈��

 and 

Δ��� = 0 
∀� ∈ �, � ∈ � 

C-ASCs ensure 
��� = ∑ ����∈��

 and Δ��� = 0 

∀� ∈ �, � = 0 

E-ASCs ensure  
��� = ��� and Δ��� = 0 

∀� ∈ �, � = 0 



Yip, Michalek, Whitefoot   19 

 
 

C2w 
Base composite utility based on sales-weighted averages plus the size correction 
factor (Table 3, 4) 

C3 
Base composite utility with both size and heterogeneity correction factors (Table 
3, 4) (results for this specification are independent of how the base composite 
utility is specified) 

Other Model Specifications 

E 

Elemental: choice set composed of disaggregated elemental alternatives at the 
make-model-trim level and their attributes. The set of elemental alternatives are 
based on the model-year 2014 vehicles tracked by IHS Polk with more than 100 
sales in California. 

 
Both case studies concentrate on choice shares for various fuel-types in the small car 

market in California. Fuel-type groupings for composites are based on the classification scheme 
in LVChoice and include gasoline vehicles, diesel vehicles, hybrid electric vehicles (HEVs), 
plug-in hybrid vehicles with a ~10-mile electric range (PHEV10), PHEVs with a ~40-mile19 
range (PHEV40), and fully electric vehicles (EVs). Sales and attribute data are from IHS Polk 
and Wards Automotive Yearbook, respectively, for model-year 2014 new car registrations in 
California. 
 
4.1 Case 1 – Logit Without ASCs 
In Case 1, we use a multinomial logit model with a functional form that includes price, fuel 
economy, 0-60 mph acceleration time, and vehicle footprint (wheelbase multiplied by track 
width), following Whitefoot and Skerlos (2012). We exclude ASCs to isolate the effect of 
composites on the model’s ability to capture choice predictions using observed attributes. Utility 
parameters are defined based on the midpoint of the willingness-to-pay ranges and the price 
elasticity of demand found by Whitefoot and Skerlos (2012). 

                                                 
19 The PHEV40 composite group is meant as a classification covering PHEVs with a large range and is not strictly 
limited to PHEVs with exactly 40 mi of all-electric range. For 2014, this included the Ford C-Max Energi SEL with 
20 mi, Cadillac ELR with 37 mi, and Chevrolet Volt with 38 mi. 
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Figure 3: Case 1 simulated choice shares by fuel type for the 2014 California new small car 
market under different specifications for the utility of composites as defined in Table 4. 
“Corr” refers to correction factors included in the model specification; “Size” and “Het” 
refer to the size and heterogeneity correction factors, respectively. The rightmost column 
“Obs” shows observed (not simulated) sales of 2014 vehicles. 
 

Figure 3 shows that choice-share predictions significantly differ depending on how the 
composites are specified. When using only arithmetic means to specify composites (C1a), choice 
predictions deviate dramatically from the benchmark elemental model results (E). Shares of 
alternative-fuel vehicles, each of which represent few elemental variants, are much larger in the 
composite model, and shares of gasoline vehicles, which represent many diverse elemental 
variants, are much smaller. Using sales-weighted-average composites (C1w) reduces the 
deviations only slightly. We find that including the size correction factor (C2a) improves 
predictions considerably, but differences in the choice shares are still substantial. For example, 
shares of HEVs and EVs in this composite specification (14% and 6%, respectively) are still 
much larger than the elemental model (7% and 3%, respectively). Gasoline vehicle share is 
substantially smaller in the composite model compared to the elemental model (72% instead of 
84%). Compared to arithmetic averages, sales-weighted average composites with the size 
correction (C2w) achieved predictions much closer to the benchmark, but they overpredict 
gasoline vehicles and underpredict HEVs and EVs relative to the elemental model. When the 
appropriate heterogeneity correction factor from Table 2 is included in model specification C3, 
the predictions successfully replicate the benchmark results. This is expected because using the 
appropriate correction factors is equivalent to the LSE solution for each composite group, 
resulting in choice probabilities that match the elemental model results.  

C1a 
None 

 
Corr: 

C1w 
None 

C2a 
Size 

C2w 
Size 

C3 
Size&Het 

E 
 

Obs 
 



Yip, Michalek, Whitefoot   21 

 
 

These results show that the use of composites and correction factors can substantially 
impact choice-share predictions. We also observe that, in this particular case study, the elemental 
model predictions of choice shares are much closer to observed shares than the predictions from 
the uncorrected composite models. This implies that, if we were to use ASCs in this case study 
for the uncorrected composite model, the ASCs would play a larger role in share predictions 
relative to the vehicle attributes we consider than they would when the elemental model is used. 
Hence, the use of composites without correction factors can significantly influence how much 
share predictions are driven by observed versus unobserved attributes. Whether unobserved 
attributes play a larger role in the uncorrected composite model or the elemental model depends, 
of course, on which model predicts actual shares more closely with no ASCs. We would expect 
this to vary from case to case. We further explore the role of ASCs in Case 2. 

We then examine how the magnitude of the effect of composite specification on choice 
probabilities compares to other sources of model error or uncertainty. We do so by repeating the 
Case 1 simulation with a range of utility parameter estimates. A total of 1000 sets of preference 
parameters are drawn from independent uniform distributions based on the interval containing all 
estimates of willingness-to-pay and price elasticities of demand across the literature reviewed in 
Whitefoot and Skerlos (2012), which reflect the uncertainty in estimated preference parameters 
arising from differences in data, estimation methods, and model specification across studies. We 
examine the magnitude of variation of these outputs due to parameter uncertainty and compare it 
to the variation due to different composite definitions. 
 

 
Figure 4: Simulated choice shares of each fuel type in the 2014 California new small car 
market, using different specifications for the utility of composites as defined in Table 4 and 
1000 sets of preference parameters drawn from ranges in the literature (Whitefoot and 
Skerlos, 2012). Boxes denote interquartile range and whiskers denote 5th and 95th 
percentiles.  
 

Figure 4 shows the magnitude of choice-share variation for each fuel-type over the 
distribution of parameter values �. For example, the box plot on the far left shows the variation 
in the share of EVs predicted by the model using the arithmetic average composite specification 
over the 1000 draws of the parameter values � from ranges in the literature. This box plot shows 
that the median share of EVs predicted by this composite model (C1) is 12%, and the 5% and 
95% percentiles of the uncertainty distribution are 7% share and 20% share, respectively. 
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Looking across the box plots, we observe that variation due to composite specification 
(comparing C1, C2, and C3 with E, the elemental model within the same fuel type) is often 
larger than variation due to parameter uncertainty (the spread of each box plot). For example, the 
share of EVs predicted by the elemental model is 2-6% (median of 3%). These results suggest 
that composite specification can cause substantial share prediction variation that can be greater 
than variation due to parameter uncertainty. Further details of these results are discussed in 
Appendix D. 
 
4.2 Case 2 – Nested Logit With ASCs 
In Case 2, we investigate the effect of using composites on VCM simulations of counterfactual 
scenarios based on VCMs used to inform policymaking. We construct a nested logit specification 
with ASCs based on LVChoice (Birky, 2012), a VCM used by the Department of Energy and the 
National Petroleum Council to simulate market shares of alternative-fuel vehicles under different 
scenarios. LVChoice uses the same utility specification and parameters as the VCM in the 
NEMS CVCC model used by the Energy Information Administration (EIA) (Birky, 2012; EIA, 
2010). Further details of the model used in Case 2 are in Appendix E. Following LVChoice and 
NEMS, we treat vehicle size classes as separate nested logit models representing isolated 
markets and consumer segments.  

Similar to Case 1, in Case 2 we simulate choice shares using a series of composite model 
specifications (C1, C2, C3), as well as a benchmark disaggregated elemental model (E). In Case 
2, we specify composite vehicles using sales-weighted averages based on the attributes and sales 
of constituent elemental alternatives in 2014 and drop the “w” from the labels for simplicity of 
notation. Composites are defined at the sub-fuel type level based on the classification scheme 
used in LVChoice and NEMS. In the elemental model, make-model-trim level alternatives are 
added as members of each sub-fuel type in a 3-level nested logit model. This model structure is 
shown in Figure 5.  
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Figure 5: Structure of the (a) composite model and (b) elemental model used in Case 2, 
based on the structure of LVChoice and NEMS (Birky, 2012; EIA, 2010). CV refers to 
conventional vehicles; TDI refers to turbo-direct-injection.  
 

In addition to constructing multiple composite models with varying correction factors, we 
examine results in this case using models with ASCs. We calibrate the ASCs post-hoc, following 
the common practice in the predictive literature for VCMs (Haaf et al., 2016). Specifically, we 
adopt the default utility-coefficient parameters in LVChoice and solve for the E-ASCs in the 
elemental model needed for predicted shares to match observed 2014 market shares. The C-
ASCs are similarly calibrated in the composite model using the sum of the observed shares of the 
elemental alternatives represented by the composite. We present the results from models with 
and without ASCs for comparison. 

We simulate scenarios that are typical of those simulated in the predictive VCM literature 
in Tables 1 and 2. These scenarios reflect counterfactual or forecasted settings that assume 
technological and/or policy changes that affect the attributes of the alternatives. We present four 
scenarios to represent the range of impacts of composite specification on choice share 
predictions20: 

(a) The baseline scenario, which includes 2014 US federal and California state subsidy and 
monetary incentive programs for EVs and PHEVs (all vehicles at 2014 list price, except 
for EV and PHEV, for which prices were reduced by $4,000-10,00021); 

(b) A counterfactual scenario in which there are no EV and PHEV subsidies (all vehicles at 
2014 list price); 

                                                 
20 The results of other simulated scenarios can be found in Appendix F. 
21 Data for subsidy amounts for each elemental vehicle were from California Air Resources Board (2017). 

 

(b) 
Elemental

(a) 
Composite
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(c) A “battery cost reduction” scenario, based on battery cost projections in the EIA Annual 
Energy Outlook Reference Case between 2014 and 2025 (Lynes, 2017) (baseline scenario 
with EV and PHEV prices reduced by $300-600/kWh from $600-1200/kWh);22 

(d) A “battery cost reduction and full EV offerings” scenario, a forecast type scenario based 
on battery cost reduction in scenario (c) and an increase in the number of EV make-
model-trim variants to equal the number of gasoline make-model-trim variants.23 
 
Figure 6 summarizes model predictions when ASCs are excluded from the models and 

when they are included. In both cases, the following composite models are constructed: the 
uncorrected composite model (C1), the composite model with the size correction factor (C2), and 
the composite model with both the size and the heterogeneity correction factor (C3), defined in 
Tables 3 and 4. These specifications follow those used in practice as discussed in section 2.2 and 
are defined in Table 5.  
 In the top row of Figure 6, where ASCs are not used, we see that the composite models 
that are not fully corrected (C1 and C2) are much more sensitive to changes in the counterfactual 
scenarios than the elemental model. Similar to Case 1, we find that the uncorrected composite 
models systematically overpredict shares for alternative-fuel vehicles (each of which represents 
few elemental variants) and underpredict gasoline vehicle share (which represents many 
elemental variants) relative to the elemental model. As expected, the fully corrected composite 
model (C3) matches the elemental model in all scenarios. 

In the bottom row of Figure 6, where ASCs are used, all models have the same results in 
the baseline scenario (a) by design. This occurs because all composite and elemental models are 
calibrated with ASCs to the observed market shares for that scenario (2014 California market 
shares). As shown in Figure 2, the C-ASCs calibrated to the baseline scenario allow for ��� =
∑ ����∈��

= ∑ ����∈��
, regardless of correction. So, the choice shares of all models are therefore 

identical in the baseline scenario. However, the composite models using ASCs can still produce 
different share predictions from the elemental model in counterfactual scenarios. In particular, 
the distortion is related to how differently the counterfactual scenarios affect the size and 
heterogeneity correction factors for each composite group.  

In the counterfactual no-subsidy scenario (b) with relatively minor impact on utility 
heterogeneity, the distortion introduced by composite specifications without correction factors is 
negligible when the models use ASCs. In the battery cost reduction scenario (c), prices of 
elemental PHEVs and EVs within the same fuel-type group are affected differently depending on 
their battery pack size. This is because the PHEV and EV composite groups include vehicles 
with a variety of battery sizes. This affects the heterogeneity correction factor for each composite 
group differently and causes the C1 and C2 models to predict different shares than the fully 
corrected C3 model and elemental model. In this instance, in scenario (c), the omission of the 
heterogeneity correction factor led to lower PHEV share (38% instead of 44%) and higher 
gasoline share (37% instead of 32%) relative to the elemental model. In scenario (d), we 
combine the battery cost reduction with an increase in the size (number of elements) of the EV 
composite group to match the size of the gasoline vehicle composite group. Both size and 
heterogeneity correction factors are shown to impact choice share predictions significantly, with 

                                                 
22 Range of battery pack cost reduction based on EIA’s estimates that depend on pack size and vehicle type (larger 
$/kWh costs and cost reductions for smaller packs such as in PHEVs). 
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EV share varying from 21% in C1 without correction to 37% in C2 with only size correction and 
to 70% with both size and heterogeneity correction, matching the elemental model prediction.23 

In the literature, model specifications such as C1 and C2 (and variants) have been used 
for counterfactual simulations in vehicle choice models, while C3 has not (see Table 2 and 2). 
The use of complete size and heterogeneity correction enables the prediction of choice shares  
that are consistent with those from the elemental model even in counterfactual scenarios.

                                                 
23 For scenario (d), we do not forecast individual EV elements, but, rather, forecast the number of EV elements in 
the correction factor, following practice in the predictive literature i.e. the user-defined Make-Model-Availability 
parameter in LVChoice (Birky, 2012) and LAVE-Trans (Greene et al., 2014). We display the elemental results of this 
case as identical to C3 results because they match by definition, but individual elements were not simulated for this 
case. 
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Figure 6: Case 2 simulated choice shares by fuel type for the 2014 California new small car market under (a) baseline and (b)-
(d)20 counterfactual scenarios with different specifications for the utility of composites as defined in Table 6. “Corr” indicates 
correction factors applied in each case; “Size” and “Het” refer to the size and heterogeneity correction factors, respectively. All 
composite utilities are defined by the sales-weighted average utilities of their corresponding elements. “Elem” indicates the 
elemental model (make-model-trim level).  
 

Corr: 
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5 CONCLUSION 
We find that the common practice of using composites for vehicle choice model predictions can 
significantly distort choice-share predictions relative to models that use disaggregated elemental 
alternatives unless appropriate correction factors are used. We identify correction factors for a 
variety of model forms: multinomial logit, nested logit, and mixed logit—with and without 
ASCs—given exogenous preference parameters. These correction factors ensure choice-share 
predictions from composite models are consistent with those from their corresponding elemental 
models in counterfactual or forecast scenarios. 

For our first case study, which excludes ASCs, the distortion of share predictions using a 
variety of specifications for composites that appear in the literature can be as wide or wider than 
the variation in share predictions due to uncertainty in preference parameters in the literature. For 
our second case study, which includes ASCs, composite-model choice shares are consistent with 
elemental-model choice shares in the baseline scenario where ASCs are calibrated, but they can 
nevertheless differ in counterfactual or forecast scenarios. 

Generally, we find that the magnitude of the distortion introduced by the use of 
composites depends on several factors. Composite models without correction factors can 
systematically misrepresent the choice shares when composite groups (1) represent a particularly 
large or small number of elements, (2) represent a heterogeneous group of elements with utilities 
that deviate substantially from the utility of the composite, or (3) when composites are used in 
counterfactual scenarios that affect the number of elements in the group (e.g.: policy increases 
electric vehicle offerings) or the heterogeneity of utility of the elements in the composite group 
differently than other composite groups (e.g.: policy increases the spread of electric vehicle 
prices).  

To avoid these distortions, we recommend that vehicle choice modelers using composites 
apply full correction factors. In many of the cases we examined, the distortions introduced by the 
use of composites are largely mitigated when the models include ASCs; however, significant 
distortion can remain in some counterfactual cases even when ASCs are used. To ensure that the 
distortion is eliminated, full correction factors are needed.  This requires data on attributes of 
elemental alternatives and, for models with ASCs, sales data for elemental alternatives in a 
baseline scenario. Vehicle attribute and sales data at a detailed level (e.g., make-model-trim and 
subseries level) are available through databases such as Wards Automotive and IHS Polk, 
respectively. Of course, future attributes are not known. Examination of past trends may inform 
sensitivity analysis for forecasting using composites with fewer parameters (e.g.: �̅, ln(�) ,
ln(�)) than if the attributes of every elemental alternative were to be forecasted (e.g.: Brooker et 
al., 2015), but more research is needed to characterize the interdependencies of these factors for 
forecasting. When sales data at the elemental level are too challenging or expensive to obtain, an 
examination of the correction factors, even when E-ASCs are uncertain, can give the modeler an 
understanding of the magnitude of distortion the composite specification may cause (for 
example, sales data at the make-model level can be assigned to elements at the make-model-
subseries level using a variety of assumptions, producing a variety of estimates for the ASCs that 
can be used for robustness checks).  

Correction factors can allow modelers to exploit the advantages of composite models, 
including reduced model complexity and computational cost, without introducing arbitrary 
distortion to choice-share results caused by specification of the composite. Our analysis focuses 
on differences between the predictions of models specified with composite vehicles and models 
specified with vehicle alternatives at the elemental level. We do not characterize how well either 
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model represents the “true” data-generating process of consumer choices (misspecification) or 
how well model predictions match observed sales. Study of interactions between model 
misspecification and the use of composites is left for future work. 
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ASC Alternative-Specific Constant 
C-ASC Composite-Alternative-Specific Constant 
E-ASC Elemental-Alternative-Specific Constant 
EIA Energy Information Administration 
EV Electric Vehicle 
HEV Hybrid Electric Vehicle 
LSE Logarithm of the Sum of the Exponential 
MMA Make-Model Availability 
NEMS National Energy Modeling System 
PHEV Plug-In Electric Vehicle 
VCM Vehicle Choice Model 
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APPENDIX A: DERIVATIONS FOR �� AND FOR ASSOCIATED COMPOSITE 
SPECIFICATIONS FOR �� = � 
In this Appendix, we derive expressions for the utility of the composite such that Δ�� = 0. For 
special cases of discrete choice models such as logit, nested logit, and mixed- and latent-class 
logit, ��� simplifies to expressions that can be solved explicitly, which we derive below. 
 
Multinomial Logit 
When both the composite and elemental models are modeled using multinomial logit 
assumptions, specifically where ��(�) = ∏ ���exp(−���)�   (iid Type I Extreme Value error 
distribution), Equation 2 simplifies to: 

Δ�� =
���

∑ ����∈�
− �

���

∑ ���
�∈�

�∈��

 

=
(���)�∑ ���

�∈� � − �∑ ���
�∈��

�(∑ ���
�∈� )

(∑ ����∈� )�∑ ���
�∈� �

 

where �, � are indices for elemental alternatives, and �, � are indices for composite alternatives. 
To specify composite vehicles that predict the choice shares consistent with those from the 
elemental model, we set Δ�� = 0 and solve for ��:  

�� = ln � � ���

�∈��

� + ln �
∑ ���

�∈�

∑ ���
�∈�

� 

The second term is the log of the ratio of the sum of exponentiated utilities of all alternatives in 
the composite model to the sum of the exponentiated utilities of all alternatives in the elemental 
model. This term can take the value of any arbitrary constant because logit choice probabilities 
are invariant to a constant shift in utility across all alternatives: 

�����

∑ �����
�

=
�����

∑ ��� ��
�

=
�����

�� ∑ ����
=

���

∑ ����
 

So, �� can be simplified to: 

�� = ln � � ���

�∈��

� + � 

where � is an arbitrary constant. The composite model generates identical choice probabilities 
for any value of �. If we choose � = 0 for simplicity1, we recover the log-sum-exponential 
function (LSE) identified by McFadden (1978)2 and Ben-Akiva and Lerman (1985): 

�� = ln � � ���

�∈��

� 

This tells us that if we specify composites such that the utility of each composite is equal to the 
LSE of the elemental alternatives it represents, the composite model will produce the same 

                                                 
1 If �� is defined as ln�∑ ���

�∈��
�, we see that the quantity 

∑ ����∈�

∑ �
��

�∈�
= 1 and therefore � =

ln(1) = 0 is consistent with the derived result. 
2 Described as the “inclusive value” 
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choice probabilities as the summed choice probabilities of the elemental alternatives each 
composite represents in the elemental model. 
 
Nested Multinomial Logit 
The nested logit model extends the logit model by allowing alternative assumptions about the 
correlation of errors in subsets of alternatives. The nest parameters �� determine the correlation 
of error terms for alternatives within the same nest, which alters substitution patterns. The 
grouping of alternatives into nests is analogous to the mapping of elemental alternatives to 
composite alternatives, and the LSE function as the utility specification for composites derived in 
the previous section is also equivalent to the closed-form solution for the marginal probability of 
a choice associated with a certain nest in the nested logit framework (McFadden, 1978), as can 
be seen in the following derivation. 
The predicted choice probability using nested logit can be expressed as the product of a 
conditional probability (j conditional on nest k) and marginal probability of nest k itself: 

�� = �(�|�)�(�) 

= �
exp �

��

��
�

∑ exp �
��

��
��∈��

� �
exp ��� ln ∑ exp �
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�

∑ exp ��� ln ∑ exp �
��

��
��∈��

��∈�

� 

where � is the nest containing alternative �. At the composite level, the choice probability for 
composite � is: 

�� =
exp(��)

∑ [exp(��)]�∈�
 

Therefore, 
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Setting the derived expression to zero results in a specification for the composite utility. 

�� = ln � � [���(��)]
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Again, the 2nd term is the same for all k, so we can interpret it to be a constant shift across all 
alternatives, which does not affect choice probability predictions3.  

                                                 
3 If �� is defined as �� ln �∑ exp �
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�, we see that the quantity 
∑ [���(��)]�∈�

∑ ������ �� ∑ ����
��

��
��∈��
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=

1 and therefore the second term equals zero, which is consistent with the derived result. 
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�� = �� ln � � exp �
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�
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This is a more general version of the previous result for logit4.  
 
Mixed Logit and Latent-Class Logit 
Further variations of the logit model involve the representation of consumer and preference 
heterogeneity. In mixed logit (also known as random coefficients logit), there are general 

continuously distributed random-variable preference parameters, ��, representing consumer 
heterogeneity, and Δ�� can be represented as: 

Δ�� = � ��
exp���′���
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A special case for Δ�� = 0 would be for the utility of composites for each value of �� to be 
specified by the following expression: 

�� = ln � exp���′���

�∈��

 

In latent-class logit, which can be thought of as a special case of mixed logit, consumer 
preferences are modeled as a discrete distribution and the choice probability integral becomes a 
summation of logit models using the consumer preferences of each latent class weighted by the 
probability of each latent class. For example, with a discrete distribution of preference 
coefficients represented by �� for consumer class i, and their proportions represented by �(��) 
where ∑ �(��)� = 1, the predicted choice probability collapses into: 

�� = � �
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4 In logit, the random error components of utility are assumed to be uncorrelated, with the nest 
parameter �� = 1 ∀� 
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Δ�� = �{Δ����(��)}

�

 

Similar to the mixed-logit case, the condition Δ�� = 0 here can be fulfilled for latent-class logit 
in a special case where each Δ��� = 0 ∀ �. This would require that the utility of composites for 
each consumer class i be specified by the LSE expression unique to each consumer class: 

��� = ln � exp���′���

�∈��

 

This ensures that each Δ��� = 0 and therefore Δ�� = 0. This special case solution implies that 
zero deviations in predictions between the composite and elemental level within each consumer 
class. 
 
APPENDIX B: DECOMPOSITION OF LSE AND DERIVATION OF CORRECTION 
FACTORS THAT ALLOW �� = � 
McFadden (1978), Ben-Akiva and Lerman (1985), and Parsons and Needelman (1992) show that 
in the logit and nested-logit cases with no ASCs, the LSE expression for the utility of composite 
alternatives can be decomposed into a function of a base composite utility �̅� (often defined as 
the average utility of its constituent elemental alternatives5) and two correction factors: “size,” 
the number of elements in the group of elemental alternatives being represented by the composite 
alternative, and “heterogeneity,” a function that accounts for differences in utility of elemental 
alternatives from the base composite utility6. We show this decomposition for nested logit first, 
which is general to logit (where �� = 1 ∀�). We then extend this derivation to mixed-logit and 
latent-class logit. 

�� = �� ln � � exp �
��

��
�

�∈��

� 

��� �� = �̅� + ��� − �̅��. Then, 

�� = �� ln � � exp �
��̅� + ��� − �̅���

��
�

�∈��

� 

= �� ln � � �exp �
�̅�

��
� exp �

�� − �̅�

��
��

�∈��

� 

                                                 
5 In the literature, the base composite’s attribute vector is often calculated as an average or weighted average (��� =
∑ �����∈��

��⁄ , where the �’s are some weights e.g.: sales of each alternative) (Goldberg, 1998; Bento et al., 2009). 

However, in some models, the base composite’s attributes are based on other methods or expert judgment, for 
example in the case of forecasts (EIA, 2010). The correction factors apply for any specification of ���. 
 
6 The exponential function in the heterogeneity correction factor amplifies the positive differences between the 
utility of the elemental alternatives and the base composite utility and shrinks the negative differences. Therefore, 
the heterogeneity correction factor is weighted towards the differences in utility of elemental alternatives with 
positive and higher differences. Ben-Akiva and Lerman (1985) observe that the derivative of the heterogeneity 
correction factor shows sensitivity to elemental alternatives with high choice probabilities. 
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This shows how the size and heterogeneity correction factors can be added to the base composite 
utility to recover the LSE quantity and maintain zero deviation between the elemental and 
composite predictions. 
We can generalize to mixed logit and latent-class logit, where �� = 1 ∀� and the model 

parameters ��, ��, and �� are continuously distributed random variables. We show the case where 
utility is linear-in-parameters for illustration. Note that when utility is linear-in-parameters, a 
composite alternative defined using the average value for each attribute will have average utility. 
Other utility models could be used so long as the heterogeneity correction factor is adjusted 
accordingly. 
For mixed logit, the LSE can be decomposed: 

��� = ln � exp���′���

�∈��

 

= ��′��� + ln(��) + ln �
∑ ��� ���′��� − ������∈��

��
� 

For latent-class logit, the LSE can also be decomposed: 

��� = ln � exp���′���

�∈��

 

= ����� + ln(��) + ln �
∑ ��� ���′��� − ������∈��

��
� 

This shows that there are correction factors unique to each consumer class i that would allow for 
the composite utilities perceived by each consumer class to equal the LSE specification and 
therefore result in composite choice share predictions that do not deviate from their 
corresponding elemental model’s predictions. 
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APPENDIX C: DERIVATIONS FOR ��, COMPOSITE SPECIFICATIONS, AND 
CORRECTION FACTORS IN MODELS USING ASCS 
In Appendices A and B, for models without ASCs, we have shown the composite utility 
specifications and correction factors necessary for the choice model predictions to match the 
elemental results. In models with ASCs, the elemental model is defined differently, where the 
utility for each choice alternative in the model is represented by: 
 

��� = ��� + �� + ��� 

 
The following shows the derivation for Δ���, which measures the differences between the 
choice share predictions of composite models that use C-ASCs and their corresponding 
elemental models that use E-ASCs, for all scenarios m. We then establish the composite 
specification required for Δ��� = 0. 
From the result of Appendix A, we found that in logit-type models, composites specified by the 
LSE of its constituent elemental utilities result in Δ�� = 0. We generalize this to obtain 
correction factors that are appropriate for models with ASCs and for all scenarios m. Instead of 
needing the composite utility �� to equal the LSE of elemental utilities �� , the composite utility 

in scenario m plus the C-ASC, ��� + ��, will need to equal the LSE of the elemental base 
utilities plus their E-ASCs, ��� + �� in order for Δ��� = 0. We show the derivation and 

decomposition here for nested logit, which can be generalized to logit and mixed logit in a 
similar manner as in Appendix A and B. 
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��� ln � � exp �
��� + ��

���
�

�∈��

� = (�̅�� + ��) + ��� ln(���) + ��� ln(���) 

 
 We observe that the composite correction factors are valid for any choice of ��, as long 
as the same quantity is included in the heterogeneity correction factor. �� is typically determined 
from previously estimated or calibrated ��, which is the standard practice in models using ASCs 
simulating counterfactual or future choice shares in scenario m (Haaf et al., 2016).  
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APPENDIX D: ADDITIONAL DETAIL ON CASE 1 RESULTS 
To visualize the deviation between various composite models and the elemental model, we 
transform the data in Figure 4 to show differences with the elemental model, Δ��. Specifically, 
we compute the difference between the composite and elemental share predictions for each 
composite model specification, conditional on each draw of �. These are plotted in Figure A1. 
We find that the results for Δ�� for most composite specifications and fuel types are statistically 
significantly different from zero. This indicates that the deviations between the composite and 
elemental models are statistically significant when accounting for variation in parameter values 
across the literature (the EV composites with size correction are exceptions where the range of 
deviations do cross zero). 
 

 
Figure A1: Differences in simulated choice shares of each fuel type for each composite 
specification as defined in Table 4 and the benchmark elemental model over 1000 sets of 
preference parameters drawn from ranges in the literature (Whitefoot and Skerlos, 2012). 
Boxes denote interquartile range and whiskers denote 5th and 95th percentiles. 
 
Figure A1 shows the distribution of the differences between the composite and elemental models 
across the 1000 draws of �. For example, the far-left box plot (C1a for EV) shows that the 
median difference between the arithmetic-average composite model and the elemental model 
predictions for EV choice shares is 6%. It also shows that the 5% and 95% percentile differences 
in prediction between the composite and elemental models across different draws of � are 1% 
and 16%, respectively. This figure illustrates that the composite models without correction tend 
to overpredict the share of AFV composites (which represent few elemental alternatives) and 



Yip, Michalek, Whitefoot   41 

 
 
underpredict the share of gasoline vehicles (for which there are many diverse elemental 
alternatives), and that this variation is robust to different values of � in the literature.  
Comparing Figure A1 to Figure 4 provides an additional way to compare the importance of 
composite specification. For example, using the arithmetic-average composite model modifies 
gasoline vehicle share predictions by 72-80% relative to the elemental model (C1a for Gasoline 
in Figure A1), while parameter uncertainty alone only results in a 12% spread between the 5th 
and 95th percentiles in gasoline share predictions from the elemental model (E for Gasoline in 
Figure 4). 
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APPENDIX E: CASE 2 MODEL DETAILS 
 
We use a nested logit utility specification and model structure based on that used in LVChoice, 
which itself is based on EIA NEMS CVCC (version AEO 2010). We use the preference 
parameters, adjusted for inflation, from the "coef" worksheet in the LVChoice Excel workbook 
(Birky, 2012) downloaded from https://www.anl.gov/energy-systems/project/light-duty-vehicle-
consumer-choice-model-lvchoice. These are reprinted below. We interpret the use of 
“technology set generalized cost coefficient” to be analogous to setting the nested logit 
parameter to be 0.5 (i.e. vehicle price parameter / technology set gen. cost = 0.00065/0.00131 = 
0.5) based on documentation in Birky (2012) and Greene and Liu (2012). 
 
The attributes and parameters in the utility specification are as follows: 

Parameter 
Small 
Car parameter units 

Vehicle Price -0.00131 1990$ 

Fuel Cost -0.62159 1990 cents/mile 

Range -155.398 miles 

Acceleration, 0-60 mph -0.28482 seconds 

Luggage Space 2.355299 index to conventional, 0-1.0 

Battery Replacement Cost -0.00082 1990$ 

Maintenance Cost -0.00397 1990$/yr 

Make/Model Availability 0.3 index to conventional, 0-1.0 

Fuel Availability Coefficient 1 -9.81375 index to gasoline, 0-1.0 

Fuel Availability Coefficient 2 -20.149 index to gasoline, 0-1.0 

Home Refueling for Evs 0.66045 dummy, 0 or 1 

Multi-Fuel General. Cost -2.98935 na 

Technology Set Gen. Cost -0.00065 na 

Source: Birky (2012) 
 
The set of elemental alternatives was based on IHS Polk at the make/series/subseries level. 
Attribute data from Wards Automotive were matched to these elemental alternatives. For 
attributes not available from Wards Automotive, default values from LVChoice for the year 2014 
were used. IHS Polk sales data were used for sales weighting and E-ASC calibration. 
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APPENDIX F: ADDITIONAL SIMULATION RESULTS FROM CASE 2 
 
We present a broader set of counterfactual scenarios simulated for Case 2. These scenarios are 
based on those tested in the predictive VCM literature in Tables 1 and 2. The full list of scenario 
details are as follows: 

(a) The baseline scenario, which includes 2014 US federal and California state subsidy and 
monetary incentive programs for EVs and PHEVs (all vehicles at 2014 list price, except 
for EV and PHEV, for which prices were reduced by $4,000-10,0007); 

(b) A counterfactual scenario in which there are no EV and PHEV subsidies (all vehicles at 
2014 list price); 

(c) A “battery cost reduction” scenario, based on battery cost projections in the EIA Annual 
Energy Outlook Reference Case between 2014 and 2025 (Lynes, 2017) (baseline scenario 
with EV and PHEV prices reduced by $300-600/kWh from $600-1200/kWh8); 

(d) A “battery cost reduction and full EV offerings” scenario, a forecast type scenario based 
on battery cost reduction in scenario (c) and an increase in the number of EV make-
model-trim variants to equal the number of gasoline make-model-trim variants.23 

(e) Battery cost reduction scenario with EV and PHEV prices reduced by $100-200/kWh 
(f) Battery cost reduction scenario with EV and PHEV prices reduced by $200-400/kWh 
(g) Gasoline tax scenario with gasoline prices increased by $0.25/gal 
(h) Gasoline tax scenario with gasoline prices increased by $1/gal 
(i) Gasoline tax scenario with gasoline prices increased by $2/gal 
(j) Gasoline tax scenario with gasoline prices increased by $3/gal 
(k) Gas-guzzler fee scenario with prices of below-average fuel economy vehicles increased 

by $1000/0.01 gallons per mile (GPM) 
(l) Gas-guzzler fee scenario with prices of below-average fuel economy vehicles increased 

by $3000/0.01 GPM 
(m) Gas-guzzler fee scenario with prices of below-average fuel economy vehicles increased 

by $5000/0.01 GPM 
(n) Rebate scenario with prices of above-average fuel economy vehicles increased by 

$1000/0.01 GPM 
(o) Rebate scenario with prices of above-average fuel economy vehicles increased by 

$3000/0.01 GPM 
(p) Rebate scenario with prices of above-average fuel economy vehicles increased by 

$5000/0.01 GPM 
(q) Fee-bate scenario with a $500/0.01 GPM fee or rebate pivoted around average fuel 

economy 
(r) Fee-bate scenario with a $1000/0.01 GPM fee or rebate pivoted around average fuel 

economy 
(s) Fee-bate scenario with a $3000/0.01 GPM fee or rebate pivoted around average fuel 

economy 
 

  

                                                 
7 Data for subsidy amounts for each elemental vehicle were from California Air Resources Board (2017). 
8 Range of battery pack cost reduction based on EIA’s estimates that depend on pack size and vehicle type (larger 
$/kWh costs and cost reductions for smaller packs such as in PHEVs). 
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Generally, counterfactual scenarios with increasing deviation from the baseline scenario (left to 
right) carry larger distortions in the predicted shares in the composite models without full 
correction (C1, C2) from the predicted result from elemental model (E). Scenarios that affect the 
utility heterogeneity of each fuel type (composite group) differently also lead to prediction 
mismatch (i.e. gas-guzzler tax affecting the set of elemental gasoline vehicle alternatives but not 
the electric vehicles, causing a change in ln(b) for the gasoline composite but not the electric 
composite). 
 
 


