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Summary

This article describes the development of a consequential
life cycle assessment (cLCA) with endogenous market-driven
design (MDD). Incorporation of MDD within cLCA (cLCA-
MDD) is beneficial because design decisions, influenced by
market forces, are a major source of environmental emissions
and resource consumption in many life cycle systems. cLCA-
MDD captures the environmental impact of these design re-
sponses resulting from industrial and policy decisions. We be-
gin by developing the concept of cLCA-MDD, then present
a case study that demonstrates how design responses can be
endogenously captured in a cLCA analysis. The case study is in
two parts: First, we incorporate endogenous design responses
into a cLCA of a mid-size vehicle and, second, we conduct a
policy analysis using a cLCA-MDD approach. The case study il-
lustrates that cLCA-MDD can capture multiple “ripple effects”
resulting from an industrial decision (e.g., downsizing a vehi-
cle’s engine) or a policy decision (e.g., raising gasoline taxes)
and that these effects significantly influence results. A key chal-
lenge of the approach is appropriately managing and commu-
nicating uncertainties associated with the choice of economic
parameters or models. We discuss sources of uncertainty in
cLCA-MDD and demonstrate a presentation scheme to facil-
itate communication of result sensitivity to uncertainties from
input parameters, models, and model structure.
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Introduction

Industrial ecology “focuses on the potential
role of industry in reducing environmental bur-
dens throughout the product lifecycle” (Lifset
2006, 18). To enable that focus, life cycle as-
sessment (LCA) characterizes materials, energy,
wastes, and emission flows through a product or
service system (hereafter referred to as a “prod-
uct”) as well as the resulting impacts on the
environment (SETAC 1993; ISO 1997). The
industrial ecology and LCA literature has dis-
tinguished two types of LCA methodologies:
attributional LCA (aLCA), which describes the
environmentally relevant flows to and from a life
cycle, and consequential LCA (cLCA), which de-
scribes how these flows may change in response
to possible decisions (e.g., Ekvall and Weidema
2004; Curran et al. 2005; Finnveden et al. 2009).
cLCA extends the boundaries of an aLCA to
include not only the flows of the product life
cycle of interest but also any flows of other prod-
ucts that are significantly affected. For exam-
ple, Schmidt and Weidema (2008) presented a
cLCA of vegetable oil in which they found that
consumption of palm oil displaces the consump-
tion of barley and soybeans. This displacement of
competing products reduces the impact of pro-
ducing palm oil on life cycle flows compared
to the case in which no competing product is
displaced.

A growing body of literature has advanced
the methodology required to incorporate cross-
life-cycle effects in cLCAs, including displaced
products, price changes of raw materials, and cost
reductions due to economies of scale (e.g., Ekvall
and Andræ 2006; Sandén and Karlström 2007;
Schmidt and Weidema 2008). Researchers still
need to develop methods to incorporate prod-
uct design decisions into cLCA when the envi-
ronmental flows are substantially dependent on
product design, however. For example, the total
environmental impact of redesigning the Volk-
swagen (VW) Touareg line so that the vehi-
cles are smaller and more fuel efficient depends
not only on the resulting changes in emissions
from the redesigned Touareg’s life cycle but also
on shifts in sales due to consumers substituting
competing vehicles in place of the redesigned
Touareg (because they prefer a larger vehicle)

and any resulting incentives for manufacturers
to change the size of these competing vehicles.
Incorporating product design responses endoge-
nously within cLCA can also make a valuable
contribution to policy analysis. For instance, the
effectiveness of carbon taxes, technology subsi-
dies, and emission standards is influenced by the
changes to product designs that may result from
the policy.

This article contributes to the development
of cLCA by demonstrating a methodology to en-
dogenously determine market-driven design re-
sponses to industrial and policy decisions (this
approach is referred to here as cLCA-MDD).
In particular, we describe techniques to deter-
mine design responses in an LCA analysis us-
ing economic oligopolistic equilibrium models.1

We then demonstrate the cLCA-MDD approach
using a case study. In the first part of the case
study, we analyze changes in life cycle green-
house gas (GHG) emissions of a mid-size vehi-
cle in response to a decision to reduce the vehi-
cle’s engine size, accounting for the equilibrium
design responses of competing firms. For clarity,
we refer to the products that are the subject of
the exogenous decision (the VW Touareg, in
the previous example) as the “protagonist prod-
ucts”, so that they can be distinguished from
competing products that are indirectly affected.
In the second part of the case study, we con-
duct a policy analysis using cLCA-MDD tech-
niques, analyzing the changes in life cycle GHG
emissions that result from increases in gaso-
line taxes, accounting for the equilibrium de-
sign responses of all firms in the mid-size vehicle
market.

The case study is only meant to be illustra-
tive of the cLCA-MDD methodology. To that
end, it has many simplifications and should not
be interpreted as a comprehensive characteriza-
tion of GHG emissions resulting from the de-
cisions analyzed. We note, however, that meth-
ods enabling extension of the case study with
more realistic submodels (e.g., representations of
production costs, demand, and use) are being
developed in the economics literature. For ex-
ample, Whitefoot and colleagues (2011) have
developed submodels of passenger vehicle per-
formance and consumer demand that could
be incorporated into the cLCA-MDD analysis

Whitefoot et al., Consequential LCA With Market-Driven Design 727
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presented here. Although we focus only on GHG
emissions in the case study, the method is equally
applicable to a complete inventory of emissions,
wastes, and resource utilization.

Additionally, we discuss uncertainty in cLCA
and present a scheme of communicating sensi-
tivity of cLCA results to these uncertainties. The
existing cLCA literature uses economic param-
eters, such as elasticities and learning curves, to
incorporate cross-life-cycle flows (e.g., Ekvall and
Andræ 2006; Sandén and Karlström 2007;
Schmidt and Weidema 2008). Evaluating the
sensitivity of results to such parameters is essen-
tial, given that many of these parameters have
large uncertainties. In practice, however, such
uncertainty analyses are often not performed.
In the case of cLCA-MDD, multiple economic
models must be employed, including consumer
demand and use functions that are dependent
on product design and pricing and cost models
that are dependent on design. The need for these
input models introduces uncertainty associated
with the choice of the specific models and any un-
certainty in model parameters. In the case study,
we handle this uncertainty by conducting a sen-
sitivity analysis under multiple combinations of
available input parameters and models and pre-
senting these results side by side to allow for easy
comparison.

The cLCA-MDD approach discussed is rel-
evant to many product categories. The specific
methods employed in the automotive case study
are directly applicable to energy-using products,
such as household appliances or consumer elec-
tronics, given the necessary models of demand,
use, and cost. More generally, endogenous design
responses could be incorporated into LCA in a
wide array of product classes, including consumer
electronics and “designable” consumables, such
as paper products and processed foods.

We begin below by describing the develop-
ment of cLCA-MDD methodology and its re-
lationship to the existing computational frame-
work for life cycle inventory (LCI) analysis. The
following section discusses uncertainties and the
use of a decision unit in cLCA in addition to a
functional unit. We then present the case study
in two parts, followed by a summary discussion of
the value and practice of cLCA-MDD.

cLCA-MDD Modeling Approach

Modeling Approach

To endogenously incorporate market-driven
design responses into LCA, we draw on customary
economic concepts of (Nash) equilibrium based
on profit maximization of firms and utility max-
imization of consumers (e.g., Samuelson 1947).
A firm’s profits depend not only on its own prod-
uct design and pricing decisions but also on its
competitors’ decisions. Consequently, firms of-
ten have incentives to adjust the designs and
prices of their products in response to a change
in a competing product’s design. We determine
these design responses by using an oligopolistic
partial-equilibrium model whereby each firm si-
multaneously maximizes its profits with respect
to the prices and designs of its products.2 Partial-
equilibrium models are widely used to study how
the incentives of industrial producers influence
the results of environmental policies (e.g., Parry
2004; Fischer and Newell 2008), and related equi-
librium analyses are increasingly being used to
explore the motives behind environmental man-
agement decisions (e.g., Lou et al. 2004; Grimes-
Casey et al. 2007). Using this approach, we can
determine the equilibrium product designs in re-
sponse to the decision of interest and changes
to life cycle flows resulting from these design
adjustments.

In principle, other methods of incorporating
design decisions could be used besides equilib-
rium modeling. For example, researchers have
proposed that the consequences of economic
behavior on LCA results be captured with
agent-based modeling (Axtell et al. 2001) and
systems dynamics (Mihelcic et al. 2003). These
approaches could, indeed, be incorporated into
the cLCA-MDD methodology in place of an
equilibrium model and consumer behavior mod-
els (e.g., for product demand and use). Given the
added complexity of these models (e.g., Bouman
et al. 2000; Garcia, 2005), we would need to
overcome significant computational burdens to
adequately account for model and parameter
uncertainty.

Figure 1A represents an LCI in which market-
driven design decisions, product demand, and
design-dependent use-phase behavior are factors
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Figure 1 Life cycle inventory (LCI) system boundaries according to (A) an attributional life cycle assessment
approach and (B) a consequential life cycle assessment with market-driven demand approach. xi, protagonist
design variables; x-i, competitor design variables; P, prices of all products; ci and c-i, the production costs of
the protagonist and competitor products, respectfully; yi and y-i, product attributes that consumers care
about of the protagonist and competitor products, respectfully; di, demand for the protagonist products.

that are left exogenous to the system boundaries.
In this system, we determine life cycle material
and energy flows by scaling industrial process data
to match exogenously determined demand. For
instance, an automotive manufacturer estimat-
ing life cycle emissions associated with selecting
a specific engine for a vehicle through an LCA
would typically assume a fixed number of units
sold and fixed vehicle miles travelled (VMT),
independent of the engine design. Uncertainty
in these assumptions could be characterized with

sensitivity analyses, but dependent relationships
between these parameters and the engine design
would be ignored.

Figure 1B represents an LCI that uses a cLCA-
MDD approach in which product designs, de-
mand, and use are computed endogenously and
dependent on the decision of interest. The sub-
script i indicates the variables of protagonist prod-
ucts, whereas −i represents variables for compet-
ing products; the absence of a subscript indicates
variables of protagonist and competing products.

Whitefoot et al., Consequential LCA With Market-Driven Design 729
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Throughout this article, we denote equilibrium
variables with an asterisk. As figure 1B illustrates,
cLCA can expand the boundaries of aLCA by
incorporating the effects of a decision on the
demand of a product as well as the demand
for competing products and effects on product
performance and product costs (Finnveden et al.
2009). cLCA-MDD further expands the system
boundaries to include calculation of product de-
signs, and prices dependent on these designs, in
response to a decision.

In the engine selection example, a cLCA-
MDD analysis would determine the equi-
librium horsepower for competing vehicles,
x∗

−i (xi ), and equilibrium prices for all vehicles,
p∗(xi , x∗

−i (xi )), in response to a change in the
protagonist vehicle’s horsepower, xi. These equi-
librium decisions will depend on submodels char-
acterizing vehicle demand as a function of the
designs and prices of competing vehicles and pro-
duction costs as a function of vehicle design. The
resulting demand and VMT, as well as associ-
ated emissions, for the protagonist vehicle and its
competitors can then be calculated given these
equilibrium designs and prices.

Researchers can use the cLCA-MDD method-
ology to analyze the life cycle environmental
impacts of a policy decision by endogenously
accounting for design and price responses of rele-
vant products in equilibrium. For example, if the
policy decision were a carbon tax, changes to the
equilibrium designs and prices of relevant prod-
ucts would be determined in response to the tax.
The resulting demand and life cycle flows could
then be calculated on the basis of these equilib-
rium decisions.

cLCA-MDD, unlike aLCA, requires a link-
age between equilibrium models and LCI data.
To explore this further, we build from the com-
putational framework for ISO-based LCI that is
well established in the literature (Heijungs 1994;
Heijungs and Suh 2002; Hertwich 2005; Suh and
Huppes 2005). In principle, it is also possible
to incorporate the MDD approach within the
economic input-output LCA (EIO-LCA) frame-
work (e.g., by extending the approach used by
Takase et al. [2005]), but this is left to future
work.

The construct of LCI as a linear algebraic sys-
tem of equations (e.g., Heijungs 1994) usually

assumes that inventory parameters in the prod-
uct system are defined by constant factors, as
shown in equation (1). The demand vector for
the unit process outputs, d, is determined exoge-
nously, whereas the coefficients describing the
transformation of j inputs (e.g., raw materials and
energy) and outputs (e.g., products and coprod-
ucts) through k unit processes represented in the
process matrix (sometimes called the technology
matrix or coefficients matrix), A. Coefficients as-
sociated with the output (input) of one unit of
material or energy have positive (negative) val-
ues. In equation (1), di represents the total quan-
tity of aluminum, steel, energy, and generic ma-
chined parts required to produce the engine for a
hypothetical vehicle model, with all other mate-
rial inputs excluded for simplicity. Data collected
indicate the inputs required to produce a single
vehicle part, with the input of steel dependent
on the vehicle’s designed horsepower, x1, which
is exogenously determined and may be varied in
a sensitivity analysis.

(1)

The vector s represents the scaling-up of unit
processes needed to satisfy the exogenous demand
vector, which can be calculated from equation (2)
as long as A is invertible:

s = A−1d (2)

The manufacturing of products and coproducts
associated with matrix A creates emissions to the
environment that can be represented within an
emission factor matrix (sometimes called the stres-
sor matrix), B. In our hypothetical example in-
equation (3), the first and last elements in B in-
dicate that production of one megajoule (MJ) of
energy emits 200 grams of carbon dioxide equiv-
alent (g CO2-eq.) emissions, and the production
of one machined part emits 50 g CO2-eq. for
every unit of horsepower.3 Given the scaling vec-
tor, s, and an assumed horsepower (100), the

730 Journal of Industrial Ecology
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cumulative life cycle emissions, v, associated with
satisfying demand can be calculated with equa-
tion (3):

(3)

The consideration of the interrelated dependen-
cies of A, B, and d to market-driven design
decisions (as in equation 4) is what differenti-
ates aLCA and cLCA-MDD. cLCA-MDD de-
termines the environmental impact of life cycle
flows, dependent on an exogenously determined
decision, as in cLCA, but also considers the resul-
tant design and demand responses to this decision
(equation 5). For example, a cLCA-MDD version
of vector d in equation (1) would determine not
only the number of machined parts necessary to
produce the demanded quantity of the protago-
nist vehicle but also the reduction of machine
parts from competing vehicles displaced by the
protagonist vehicle. The cLCA-MDD version of
the B matrix in equation (3) would determine not
only the emissions intensity factors as a function
of the protagonist vehicle’s horsepower but also
those associated with competing vehicles’ equi-
librium design characteristics as a function of the
protagonist’s horsepower.

A(xi ) s(xi , x∗
−i (xi ))

= d(xi , x∗
−i (xi ), p∗(xi , x∗

−i (xi )))
(4)

B(xi ) s(xi , x∗
−i (xi )) = v(xi , x∗

−i (xi )) (5)

The dependency of life cycle flows on endogenous
design responses allows cLCA-MDD to capture
many direct and indirect “ripple effects,” as char-
acterized by Hertwich (2005). For example, the
economics literature has recognized that automo-
tive firms have an incentive to decrease the fuel
efficiency of their vehicles in favor of larger size,
in response to a decrease in size (and increase
in fuel efficiency) of a competing vehicle (e.g.,
Jacobsen 2010; Whitefoot et al. 2011). This indi-
rect effect can be captured in cLCA-MDD, along
with direct effects, such as the classical energy-
economics concept of rebound effects, whereby

energy use increases as a result of fuel efficiency
improvements (or fuel price decreases).

Equations (4) and (5) present at least two
challenges for cLCA-MDD. The first is the pa-
rameterization of the process matrix A(xi) and
the emission factor matrix B(xi) as functions of
all relevant design variables. Although this cer-
tainly is not trivial, similar data have been col-
lected and analyzed in sensitivity analyses of de-
sign choices (e.g., Keoleian 1998). The second
issue is the need for models of consumer be-
havior (e.g., product demand and use functions)
to determine d(xi , x∗

−i (xi ), p∗(xi , x∗
−i (xi ))) and

an equilibrium simulation to determine x∗
−i (xi ).

These issues increase the data requirements and
computational costs of cLCA-MDD.

Relevant consumer behavior submodels to de-
termine d in equation (4) include consumer util-
ity models of product demand (e.g., how con-
sumer demand for a particular vehicle changes
with the vehicle’s design and pricing) and use
(e.g., how demand for VMT changes with vehicle
horsepower). Determining equilibrium design re-
sponses, x∗

−i , and prices, p∗, also requires submod-
els of production costs, c(x), and product perfor-
mance (e.g., fuel economy as a function of engine
horsepower), y(x), in addition to a model of prod-
uct demand. Given these models, one can deter-
mine equilibrium prices and competing product
designs by simulating a partial-equilibrium model
in which firms maximize profits with respect to
the design variables and prices of their products,
given the prices and design variables of compet-
ing products. This process is outlined in detail
and implemented by Michalek and colleagues
(2004). We also refer the reader to other publi-
cation examples (e.g., Shiau and Michalek 2009;
Frischknecht et al. 2010; Whitefoot et al. 2011)
that provide recent applications of oligopolistic
equilibrium models to product design.

Functional and Decision Unit

Implementing cLCA-MDD requires the same
goal definition and scoping stage as implement-
ing aLCA. Issues such as the purpose, scope,
functional unit, and boundaries for the system
must be considered. Unit processes must be de-
fined and populated with the most representative
data available, after a detailed and transparent

Whitefoot et al., Consequential LCA With Market-Driven Design 731
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analysis of the data. The complexity of account-
ing for flows through possibly hundreds of pro-
cesses and managing the inventory of coproduced
wastes (Heijungs and Suh 2002) must be rigor-
ously addressed through model simplification and
careful consideration of system boundaries and
allocation methods.

During goal definition and scoping in cLCA,
we have also found it necessary to clearly spec-
ify a decision unit along with a functional unit. For
example, a decision unit for the VW example in
the introduction could be “downsizing the VW
Touareg model by 10%.” In the same way that the
functional unit is useful to help determine which
life cycle unit processes can be excluded from
the analysis (e.g., on the basis of contribution to
overall emissions or consumption), the decision
unit helps the researcher justify the inclusion or
exclusion of specific models and assumptions. In
a cLCA, in which impacts of a decision on the
environment can cascade through countless in-
direct impacts on other products and consumer
behavior, the significance of including a parame-
ter or model to characterize these effects is usually
not evident from the functional unit alone, with-
out a decision unit also specified.

Life Cycle Assessment
Uncertainties

Given perfectly accurate data and models of
firm and consumer behavior, cLCA could reduce
uncertainty compared to aLCA because the sys-
tematic relationships between input parameters
are defined. Even with sufficient validation of
the individual input models and parameters, how-
ever, multiple models and parameters often exist,
and validation of the interaction of several sub-
models is very challenging and not generally pos-
sible (see the work of Frischknecht et al. [2010]
for a discussion of submodel evaluation). As a
result, we would expect that cLCA adds signif-
icant uncertainties to those already present in
LCA (see the work of Ross et al. [2002] for a re-
view). With respect to the inventory stage, four
categories of uncertainty that must be managed
in both aLCI and cLCI are (1) structural un-
certainty, (2) model uncertainty, (3) parameter
uncertainty, and (4) variable uncertainty. Below,

we define these four categories of uncertainty as
they are used later in the article. We do not con-
sider the uncertainties involved with translating
LCI results to environmental impacts (see Lenzen
2006).

Structural uncertainty concerns the intercon-
nections between models, embodying questions
regarding the appropriateness of the overall mod-
eling approach and assumptions of how submod-
els are interconnected. For instance, questions
of structural uncertainty in cLCI could focus
on what types of competing products are con-
sidered, what parameters are considered exoge-
nous, and whether it is reasonable to assume
that firms behave as though they are in partial
equilibrium. Structural uncertainty questions
common to both cLCI and aLCI include the def-
inition of the functional unit and the incorpo-
ration of unit processes inside and outside the
system boundary and have previously been ad-
dressed with computation-based, hybrid input-
output LCI (Lenzen 2001; Williams et al. 2009).

Model uncertainty considers the appropriate-
ness of the selected models to determine required
outputs. The selection of a product performance
model to convert design variables, x (e.g., horse-
power) into consumer observable attributes, y
(e.g., fuel economy) would be classified under
model uncertainty, as would selection of mod-
els characterizing life cycle flows in the absence
of direct measurements.

Parameters are exogenous to the LCA study
(e.g., elasticities) and often have uncertainties
expressed by distributions, confidence intervals,
or discrete values. Variables are endogenous to
the study and may also have uncertainty if they
are generated by stochastic models (e.g., fuel
economy dependent on random traffic condi-
tions). Uncertainty associated with parameters
and variables with known distributions can be
treated with standard methods, such as inter-
val assessment, bootstrapping, and Monte Carlo
analysis (Lloyd and Ries 2008). Parameter un-
certainty deriving from discrete values, how-
ever, presents additional challenges. For example,
many different estimates of the elasticity of gaso-
line demand have been produced from the econo-
metrics literature (Graham and Glaister 2002).
This cross-study uncertainty cannot as easily be
analyzed with distributional assumptions.
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To address uncertainties associated with dis-
crete parameters and models, we generate results
under multiple combinations of selected submod-
els and parameters within models, referred to as
scenarios. Structural uncertainty could similarly
be handled under such a system but is not ad-
dressed in the case study. Uncertainty associated
with input parameters with assumed or estimated
distributions is captured with confidence inter-
vals within each scenario, generated from boot-
strap samples. Multiple scenarios can be arranged
together in matrices, which we call scenario land-
scapes, to facilitate easy comparison. This pre-
sentation scheme complements the uncertainty
analysis discussed by Huijbregts and colleagues
(2003). Although the authors suggest assigning
a probability of “faith” in models and discrete
parameters to generate confidence intervals, we
avoid this aggregation, instead illustrating result
sensitivity to specific input parameters and mod-
els. This type of analysis can be used in cLCA
to interpret the integrity of results over a range
of scenario landscapes that are appropriate to
the goals and scope of the analysis. We believe
that this approach increases the transparency
of system boundary decisions and overall study
conclusions.

Case Study Part 1: Industrial
Decision

Goal and Scope

This study investigates the change in life cy-
cle GHG emissions resulting from a decision to
downsize the engine of a mid-size vehicle by 25%
(in terms of horsepower). In particular, we evalu-
ate the hypothesis that this level of engine down-
sizing will reduce life cycle GHG emissions asso-
ciated with the mid-size vehicle market by at least
10%. The scope of the study includes the effects of
this decision on equilibrium design adjustments
to competing vehicles, changes in demand for the
protagonist and competing vehicles, and changes
in the VMT of these vehicles. Endogenous de-
sign variables considered include the horsepower
and final drive ratio (the gear ratio between the
transmission and wheels) of competing vehicles
and the final drive ratio of the protagonist ve-
hicle. The study includes the effects of these de-

sign variables and the protagonist vehicle’s horse-
power on production costs, fuel economy, 0 mph
to 60 mph acceleration time, and the mass of the
vehicle body needed to support the engine. All
other aspects of the vehicle are assumed to be
fixed and equivalent to the mid-size vehicle con-
sidered by Keoleian and colleagues (1998). Deci-
sions on engine horsepower affect upstream ma-
terial and manufacturing emissions, downstream
end-of-life unit processes, and use-phase emis-
sions associated with consumer demand for VMT
based on the operating cost of the vehicle. The
effect of changes to final drive ratios on life cycle
flows and production costs are negligible and so
are not considered.

A number of additional ripple effects are not
considered in the boundary of this particular case
study. For instance, decreases (increases) of ve-
hicle prices in response to the decision analyzed
may increase (decrease) the money consumers
have available for other purchases. Consumption
(or avoided consumption) of additional goods
due to this change would have environmental
consequences that are not considered. Macroe-
conomic effects, such as the relationship of pro-
ducer welfare to industrial investment, wages, or
tax receipts, are also not considered. Such eco-
nomic shifts also lead to changes in consumption
that are outside the boundaries of this case study.
These effects could be included in a cLCA-MDD
analysis and are already included in some large-
scale policy analyses (U.S. Energy Information
Administration 2010).

The following subsections summarize the life-
cycle unit processes and models employed in the
case study. In the interest of brevity and focus,
many of the details are provided in the references
and the supporting information on the Journal’s
Web site. The descriptions are only meant to
demonstrate how submodels of product perfor-
mance, demand, and use can be incorporated into
cLCA. The results of the case study are not in-
tended to accurately describe the affects of the
decisions analyzed but provide a useful demon-
stration of the cLCA-MDD approach.

Unit Processes

The process and emission factor matrices are
based on a generic vehicle LCI from the U.S.
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Automotive Materials Partnership (Keoleian et
al. 1998) that estimates the material and en-
ergy profile for a mid-size vehicle with a gaso-
line engine (3 liters [L], 140 horsepower [hp]).
The baseline vehicle material inputs are listed
in Table 1 of the supporting information on the
Web and represent 90% of the body mass, 86.5%
of the powertrain mass and 97% of the suspen-
sion mass; excluded components are not signifi-
cantly affected by the design decisions. To deter-
mine the relationship between horsepower and
engine mass, we combine power-displacement
data from Arnold and colleagues (2005) with the
displacement-mass data from Messner (2007).
The relationship between engine weight and the
weight of the vehicle frame and body necessary
to support the engine is accounted for with a
weight-compounding factor of 0.5, from Lave and
colleagues (2000). The study assumes that energy
inputs for engine manufacture are independent of
engine horsepower and that energy used in body
manufacture varies with body mass. A suspension
system of constant size is also manufactured with
materials and energy, as modeled according to
the work of Keoleian and colleagues (1998). Ve-
hicles are assembled from the manufactured sys-
tems with additional inputs of materials (no other
systems manufacturing is modeled) and energy.
After production, the new vehicles are driven for
their useful life and then sent to a shredder, which
recovers metals and sends nonmetals to a landfill.
Additional nonmetal inputs and transportation
between processing facilities are not included in
the analysis.

Partial-Equilibrium Model

We model the market for mid-size vehicles as
an oligopoly in partial equilibrium. Five produc-
ers are modeled, but the qualitative results of the
case study do not change as a result of this as-
sumption. Firms maximize profit with respect to
the horsepower (between 100 and 210 hp), final
drive ratio (between 0.2 and 1.3), and prices of
their vehicles, with demand and costs calculated
dependent on these variables from submodels de-
scribed below. We computed the equilibrium by
sequentially optimizing each firm’s profits given
fixed competitor vehicle designs and prices until
convergence. Additional details can be found in

the work of Skerlos and colleagues (2005) or Hu
and Ralph (2007).

Vehicle Performance Model

The relationship between design variables and
product performance attributes (fuel economy
and acceleration performance) is taken from the
work of Michalek and colleagues (2004). This
model approximates results from the vehicle sim-
ulation software, ADVISOR (AVL LIST GmbH,
Austria). ADVISOR calculates a vehicle’s fuel
economy and 0 mph to 60 mph acceleration time4

on the basis of input driving cycles, engine maps,
and vehicle parameters (including the final drive
ratio and scaling of the engine horsepower).

Product Demand Model

A logit model, based on the model esti-
mated by Boyd and Mellman (1980), determines
consumer demand for vehicles on the basis of
price and performance attributes. This model, al-
though dated, provides the simplicity and conve-
nience appropriate for demonstrating the cLCA-
MDD approach in the case study. The model does
not account for heterogeneity of consumer pref-
erences. The possibility that consumers may not
choose any of the product offerings is included,
modeled as an “outside good.” In this study, we
assume the outside good is an old vehicle that has
a fuel economy of 21.8 miles per gallon (mpg),5

equivalent to the average on-road passenger ve-
hicle in 1994 (U.S. Energy Information Admin-
istration 1995). For a discussion of contemporary
product demand modeling, see the work of Lou-
viere and colleagues (2000) and Train (2003).

Use Demand Model

To determine demand for VMT per year, we
use two econometric models that were originally
derived to explain fuel consumption trends for
light-duty vehicles in the United States (Jones
1993; Goldberg 1998). These models are com-
pared to U.S. Department of Transportation
VMT data in the supporting information on the
Web. Demographic and transportation infras-
tructure variables that factor into these models
are assigned constant average values from 1990s
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data to align with the input LCI data. Vehicle op-
erating costs and purchase prices are determined
from the partial-equilibrium model. The lifetime
of all vehicles is assumed as 15 years; the possi-
bility that vehicles could be driven for fewer or
more than 15 years is not modeled.

Comparison of aLCI, cLCI,
and cLCI-MDD

To illustrate some of the differences of taking
an aLCA, cLCA, or cLCA-MDD approach, we
compare LCI results using the data and models
used in this case study. Figure 2A shows life cy-
cle GHG emissions using an aLCI approach. The
results assume that VMT for each vehicle is iden-
tical and independent of fuel economy but subject
to sensitivity analyses. The figure illustrates the
results of varying both VMT (5,000 to 30,000
miles/vehicle-year) and engine horsepower (100,
140, and 200 hp). Results qualitatively match
the work of Keoleian and colleagues (1998), al-
though values differ slightly due to the vehicle
system boundary simplifications defined earlier.
Figure 2B illustrates how the life cycle CO2-eq.
emissions are broken down by life cycle stage for
the case in which VMT per year is 11,200 miles
and the selected engine is 140 hp.

Figure 3A illustrates LCI results for the same
vehicle model using a simple cLCA approach, in
which VMT is calculated as a function of fuel
price and affects use-phase emissions. The ve-
hicle’s engine is assumed 140 hp. Figure 3B il-
lustrates a cLCA-MDD approach, whereby both
equilibrium design variables (horsepower and fi-
nal drive ratio) and VMT are calculated on the
basis of fuel price. Here, emissions from all life
cycle stages are affected by the design variable
decisions in addition to use-phase emissions from
VMT. The figures include evaluation of model
uncertainty through the comparison of VMT
models by Jones (1993) and Goldberg (1998) and
an assumed insensitivity of VMT to fuel price.
Because both the demand and the cost models in
this simple example do not represent heterogene-
ity across firms, all firms have the same vehicle
design variables in equilibrium in figure 3B.

Unlike the aLCA approach shown in fig-
ure 2, the cLCA-MDD approach accounts for
the correlation of VMT and engine horsepower
due to their mutual dependency on fuel prices.
Contrasting figure 3A with figure 3B illustrates
how endogenously determining design responses
within an LCA can capture important ripple ef-
fects. The cLCA-MDD results suggest that life-
time GHG emissions are significantly lower at

Li
fe

cy
cl

e 
C

O
 -

eq
. e

m
is

si
on

s,
 to

nn
es

2

0

50

100

150

200

250

0

10

20

30

40

50

100 hp engine
140 hp engine
200 hp engine

11%
5%

2%

82%

< 1%

5,000 10,000 15,000 20,000 25,000 30,000 35,000

Vehicle miles travelled (mi/year)
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(CO2-eq.) using an attributional life cycle assessment approach. (B) Emissions from the 140-horsepower (hp)
vehicle with 11,200 vehicle miles travelled, broken down by life cycle stage. mi = miles.
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Figure 3 Life cycle greenhouse gas emissions as a function of fuel price according to (A) a consequential life
cycle assessment approach, whereby vehicle design is fixed but vehicle miles travelled (VMT) is a function of
fuel price, and (B) a consequential life cycle assessment with market-driven demand approach, whereby both
vehicle miles travelled and equilibrium engine horsepower are dependent on fuel price. CO2-eq. = carbon
dioxide equivalent; B&M Demand = use of the demand model published by Boyd and Mellman in 1980.

high gas prices than the cLCA without MDD.
The cLCA-MDD results suggest that automotive
manufacturers downsize their vehicles’ engines in
response to higher fuel prices and, even given the
rebound effect of VMT increasing due to better
fuel economy, this downsizing decreases life cycle
GHG emissions.

Results

We employ the cLCA-MDD methodology to
examine the changes in GHG emissions result-
ing from the decision to reduce the protagonist
vehicle’s horsepower. To do this, we compare the
life cycle GHG emissions from a baseline case,
in which all firms choose the equilibrium design
variables (as in figure 3B), to a case in which the
protagonist vehicle horsepower is 25% lower than
in equilibrium. The final drive ratio of the protag-
onist vehicle, equilibrium designs for competing
vehicles, and all prices are determined in response
to this decision. Figure 4 shows the results of this
analysis using Jones’s (1993) VMT model and
assuming a fuel price of $2.60. This figure illus-
trates that the cLCA-MDD approach captures a
negative ripple effect: Competing firms increase
the horsepower of their vehicles in response to

the protagonist’s decision to decrease horsepower
to attract more consumer demand (see Jacobsen
2010; Whitefoot et al. 2011). GHG emissions
directly associated with a protagonist vehicle de-
crease by 11.4 tonnes CO2-eq., but the redesign
also induces an increase in life cycle emissions of
each competing vehicle by 3.3 tonnes CO2-eq.

Sensitivity Analysis Under Parameter and
Model Uncertainty

We evaluate results, on the basis of the hy-
pothesis that a 25% reduction in the (equilib-
rium) horsepower of a mid-size vehicle can re-
duce the associated life cycle GHG emissions by
at least 10%, considering uncertainty in the fuel
price and in the VMT model. Figure 5 illustrates
a landscape of eight scenarios. We create the
scenarios by varying the baseline (before carbon
tax) gasoline price at four discrete levels from
$1.40 to $5.00 and using two different VMT mod-
els (Jones 1993; Goldberg 1998).

Ninety percent confidence intervals are
shown in parentheses in figure 5, calculated from
1,000 bootstrap samples of input demand-model
parameters. Light shaded scenarios indicate that
the hypothesis is supported; mid-shade regions
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Figure 4 Changes in life cycle greenhouse gas emissions associated with a mid-size vehicle (the protagonist)
as a result of the decision to downsize the vehicle’s engine. CO2-eq. = carbon dioxide equivalent.

Figure 5 Greenhouse gas emission results evaluated over scenarios of fuel price parameter and vehicle
miles travelled (VMT) model. The shade of the scenario indicates acceptance (light), rejection (dark; none
shown in this figure), or neither (mid-shade) of the case-study hypothesis. Confidence intervals are shown in
parentheses. B&M Demand = use of the demand model published by Boyd and Mellman in 1980.

indicate that it is not supported or rejected. Per-
centage reductions of GHG emissions are smaller
for higher fuel prices because the 25% reduction
of engine power from equilibrium is smaller.

Case Study Part 2: Policy
Decision

Goal and Scope

This part of the case study investigates the
life cycle GHG emissions of the mid-size vehicle
market resulting from the decision to add a car-
bon tax on gasoline of $25/tonne CO2. In par-

ticular, we determine life cycle GHG emissions
for the mid-size vehicle market, modeled as in
the Results section, with and without a carbon
tax on gasoline of $25/tonne CO2. We evaluate
the hypothesis that this level of carbon tax on
gasoline will reduce total life cycle GHG emis-
sions associated with the mid-size vehicle market
by at least 5% relative to a 1994 baseline when
average gasoline prices were $1.64 (adjusted to
2010 prices according to the consumer price in-
dex). The scope of the study includes the effects of
this decision on equilibrium design adjustments
to all mid-size vehicles and the VMT associated
with these vehicles. Endogenous design variables
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Figure 6 Greenhouse gas emission results evaluated over scenarios of fuel price parameter and vehicle
miles travelled (VMT) model. The shade of the scenario indicates acceptance (light), rejection (dark), or
neither (mid-shade) of the case-study hypothesis. B&M Demand = use of the demand model published by
Boyd and Mellman in 1980.

considered are the horsepower and final drive ra-
tio of all mid-size vehicles. The process and emis-
sion factor matrices and selected submodels are
the same as in the first part of the case study.

Results

Incorporating endogenous design decisions in
the analysis gives significantly larger estimates of
lifetime GHG reductions from mid-size vehicles
due to the carbon tax. For example, when we use
Jones’s (1993) VMT model and assume that pre-
carbon-tax gasoline prices are $2.60, results indi-
cate that the carbon tax leads to a reduction of
life cycle emissions by 3.8% (90% confidence in-
terval [CI] = 1.38, 5.03). The equilibrium horse-
power of the mid-size vehicles was reduced from
210 hp in the baseline case to 200 hp with the
carbon tax, and the equilibrium final drive ra-
tio increased slightly. If we ignore these design
changes, the results indicate a reduction of only
0.50% (90% CI = 0.48, 0.51) of life cycle emis-
sions in response to the tax.

Sensitivity Analysis Under Parameter
and Model Uncertainty

Similar to part 1 of the case study, we generate
results over scenarios of the fuel price parameter
and the VMT model, shown in figure 6. The shade
of the scenario indicates acceptance (light), re-
jection (dark), or neither (mid-shade) of the case
study hypothesis: A carbon tax of $25/tonne CO2

($0.08/gallon) can reduce total life cycle GHG
emissions of the mid-size vehicle market by at
least 5% compared to a 1994 baseline at which
average gasoline prices were $1.64.

Summary and Conclusions

This article contributes to the methodology
of cLCA, which is a valuable framework to study
the impact of industrial and policy decisions on
life cycle emissions, by presenting an approach to
account for MDD responses (cLCA-MDD). The
application of LCA methods for future product
or policy design has long been recognized as an
important tool for sustainable development (Ke-
oleian and Menerey, 1994; Ehrenfeld, 1997), but
a comprehensive quantitative design framework
has been lacking. This article has introduced
the concept for a cLCA-MDD approach, demon-
strated its feasibility, and illustrated its applicabil-
ity with a simplified case study. Although cLCA-
MDD can, in principle, be accomplished with
other methods, such as agent-based modeling or
systems dynamics, in this article, we performed
cLCA-MDD using equilibrium analysis. That is,
an oligopolistic equilibrium model endogenously
determined the vehicle powertrain designs and
prices, as well as consumer demand and VMT,
that resulted from specific industrial and policy
decisions. A comparison between life cycle in-
ventory results from aLCA, cLCA without MDD,
and cLCA-MDD approaches illustrated the
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importance of capturing design responses to in-
dustrial and policy decisions. We have also il-
lustrated a scheme for presenting results under
scenarios of input parameters and models, which
communicates uncertainties in the analysis.

Much of the research to convert the simpli-
fied case study presented into a more thorough
analysis has already been accomplished. For in-
stance, research that is required to improve the
demand models (e.g., Whitefoot et al. 2011),
vehicle performance models (e.g., Frischknecht
2009; Whitefoot et al. 2011), and simulation
approaches (Morrow 2008) has reached the
literature. Instead of incorporating these more
sophisticated models into the present article,
we simplified the discussion to focus on a ba-
sic blueprint for cLCA-MDD, with the goal of
inspiring future research in this area within the
LCA and industrial ecology community. We ex-
pect the resulting discussion will advance cLCA
and further increase its relevance and practicality
to the sustainable design of products and the de-
sign of policies intended to promote sustainable
development.

The fundamental relationship between de-
sign decisions and environmental impacts is ev-
ident in industrial ecology: “Technology, com-
bined with improved design, can greatly aid the
quest for sustainability. Indeed, the notion that
technological choice is crucial for environmental
improvement lies at the core of industrial ecol-
ogy” (Chertow 2000, 15). Clearly, design deci-
sions regarding the products and services we use
have a close link with our effect on the environ-
ment. Equally clearly, simply making available
the technology or design options that can reduce
environmental impacts is not sufficient. We also
need to understand the various factors that facil-
itate or hinder their deployment and how these
factors are influenced by industrial or policy deci-
sions. The development of an LCA approach that
accounts for design decisions made in response to
market forces is a step in this direction.
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Notes

1. An equilibrium in economics is defined as a set of
decisions from which no agent (firm, in this case)
has a profitable incentive to deviate (e.g., Samuel-
son 1983).

2. The model represents a partial equilibrium because
the prices and design decisions of the mid-size ve-
hicle market are in equilibrium, but the price of
gasoline is specified as an input parameter and not
necessarily in equilibrium.

3. One gram (g) = 10−3 kilograms (kg, SI) ≈ 0.035
ounces (oz).

4. One mile per hour (mph) ≈ 1.61 kilometers per
hour (km/h).

5. One mile per gallon (mi./gal.) ≈ 0.425 kilometers
per liter (km/L).
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Supporting Information

Additional supporting information may be found in the online version of this article:

Supporting Information S1: This supporting information describes the data and submodels
used in the demonstration of consequential life cycle assessment with market-driven design
(cLCA-MDD). It details the life cycle data and modeling that characterizes the material and
energy flows associated with the life cycle of a mid-size vehicle. It also describes the sources of
submodels of consumer demand and production costs and their associated assumptions, as well as
the assumptions and formulation of the equilibrium model. Finally, the supporting information
describes assumptions of vehicle use used to generate greenhouse gas (GHG) calculations per
mile and vehicle miles travelled (VMT) as a function of fuel price.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting
information supplied by the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.
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