
W. Ross Morrow
Mechanical Engineering,

Iowa State University,

Ames, Iowa 50011

e-mail: wrmorrow@iastate.edu

Joshua Mineroff
Mechanical Engineering,

Iowa State University,

Ames, Iowa 50011

e-mail: mineroff@iastate.edu

Kate S. Whitefoot
National Academy of Engineering,

Washington, DC 20418

e-mail: kwhitefoot@nae.edu

Numerically Stable
Design Optimization
With Price Competition
Researchers in decision-based design (DBD) have suggested that business objectives,
e.g., profits, should replace engineering requirements or performance metrics as the
objective for engineering design. This requires modeling market performance, including
consumer preferences and competition between firms. Game-theoretic “design-then-
pricing” models—i.e., product design anticipating future price competition–provide an
important framework for integrating consumer preferences and competition when design
decisions must be made before prices are decided by a firm or by its competitors. This
article concerns computational optimization in a design-then-pricing model. We argue
that some approaches may be fundamentally difficult for existing solvers and propose a
method that exhibits both improved efficiency and reliability relative to existing methods.
Numerical results for a vehicle design example validate our theoretical arguments and
examine the impact of anticipating pricing competition on design decisions. We find that
anticipating pricing competition, while potentially important for accurately forecasting
profits, does not necessarily have a significant effect on optimal design decisions. Most
existing examples suggest otherwise, anticipating competition in prices is important to
choosing optimal designs. Our example differs in the importance of design constraints,
that reduce the influence the market model has on optimal designs.
[DOI: 10.1115/1.4025703]

1 Introduction

Research in DBD, Enterprise-System Design, and Value-
Driven Design suggests replacing traditional engineering require-
ments or performance metrics with overarching business goals as
the objective for engineering design [1–4]. Wassenaar and Chen
[3] specifically propose using economic value to the firm—e.g.,
profits—as the metric to judge different designs. The recent
“market-systems” theme in this literature has recognized that
using profits as the objective for engineering design ultimately
requires modeling the features of real markets in which products
are sold. For example, product profitability is not only a function
of consumer’s choices, but the choices made by competing firms,
retailers, and regulators. Shiau and Michalek [5] and Williams
et al. [6,7] have shown that retail channel structure may influence
optimal engineering designs. Several engineering studies have
studied interactions between design and regulatory policy
[5,8–10]. These features of real markets have been integrated into
engineering design using Game Theory [11–14], following long
trends in empirical economics [15–30] and marketing [31–37].

We consider design decisions when firms anticipate price com-
petition, referred to here as the design-then-pricing paradigm
[31,38–40]. In this model, a firm chooses designs assuming that,
at some later time, prices will be determined through some com-
petitive mechanism given these design decisions; see Fig. 1, right.
We assume that the firm adopts Bertrand–Nash equilibrium
pricing [31,39,41] as the representation of market competition
in prices, though other equilibrium concepts have been explored
[40]. Some existing models adopt a design-and-pricing
paradigm that assumes firms make design-and-pricing decisions
simultaneously, without accounting for “reactions” by their com-
petitors or other market entities [8–10]; see Fig. 1, left. However,
it is possible that competitors or other market entities do change

some decisions in reaction to a firms design and/or pricing deci-
sions. One prominent example occurs when modeling retail chan-
nels [5–7,34,35,42], where it is reasonable to suppose that
retailers’ maximize profits with their pricing decisions once they
know wholesale prices.

Existing research has demonstrated the potential importance of
the game-theoretic market-systems paradigm to product design,
including the design-then-pricing model [5–8,39,40]. The major-
ity of this existing work is, appropriately, based on small-scale
“illustrative” examples with significant engineering detail rather
than focusing on “real-scale” applications of the design-then-pric-
ing paradigm to current differentiated product markets that may
have hundreds or thousands of product variants [43]. For example,
econometric studies of the new car market include hundreds of
vehicles [9], and automotive market data sources routinely repre-
sent thousands of distinct vehicle models [44,45]. Unfortunately
optimization methods proposed on the basis of performance for
small-scale problems may be incapable of reliably or efficiently
solving problems for large markets.

This article clarifies and confronts this concern. We compare
three approaches for solving design-then-pricing problems: an
“implicit programming” approach and two approaches based on
mathematical programs with equilibrium constraints (MPECs). In
implicit programming [46], equilibrium prices are treated as an
intermediate quantity or internal “simulation” and computed using
iterative techniques at each trial point (e.g., Refs. [31,39,47]).
“MPEC” approaches treat prices as variables that must satisfy a
constraint that describes equilibrium (e.g., Ref. [39]). Our primary
contributions are as follows.

First, while implicit programming can reliably compute equi-
librium prices, it may require prohibitively accurate computa-
tions of equilibrium prices to converge reliably when there are
many product variants. Appropriately designed MPEC methods
can be both more efficient and reliable for computing optimal
designs when anticipating price competition. Similar phenomena
have been observed in econometrics [48] and chemical engi-
neering [49].
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Second, we show that the choice of equilibrium constraint in
MPEC formulations can determine problem solvability. We dem-
onstrate, both in theory and in a practical example, that spurious
solutions to design-then-pricing problems exist and can be com-
puted if the problem is formulated using the literal first-order con-
dition for equilibrium as proposed in the existing literature.
Applying a fixed-point representation of the first-order condition
for equilibrium prices provably eliminates many of these spurious
solutions [41,50,51]. We also show that spurious solutions exist
and can be computed in design-and-pricing, and demonstrate a
correction for this case as well.

Third, we discuss the importance of checking the second-order
sufficient condition (SOSC) [52, Chap. 12] in design-then-pricing
problems, and an efficient approach to undertaking such checks in
practice. In the context of design-then-pricing, the use of first-
order conditions to compute equilibrium prices drives the need to
validate equilibrium using the SOSC [39,41]. However, the exist-
ing literature has proposed a potentially inefficient heuristic that is
not based on the SOSC, requires re-optimizing firms profits with
respect to prices, and may not always correctly validate equilib-
rium in design-then-pricing problems. Our check, based on the
standard SOSC derived from local properties of the profit func-
tions, is theoretically rigorous and can be executed using efficient
linear algebra routines alone.

Fourth, new numerical results concerning a real-scale vehicle
design example with 472 products are provided. This example is 2
orders of magnitude larger, in terms of market scale, than the
examples currently in the literature. This example serves to dem-
onstrate how dramatically some numerical methods can fail for
large design-then-pricing problems, while simultaneously show-
ing that such problems can be solved very efficiently when using
the right methods. We also use this example to compare design-
then-pricing with design-and-pricing, allowing us to assess the
value of anticipating pricing competition when making design
decisions. This comparison is more subtle than is currently
acknowledged in the literature. Particularly, we may attach more
importance to anticipating pricing competition if the accuracy of
profit forecasts during design is important; however, if we only
care about realizing the highest profits possible, anticipating com-
petition may be irrelevant if physical constraints and monotonic
consumer preferences drive design decisions.

The remainder of this article proceeds as follows. Section 2
introduces a framework for the design-then-pricing model consid-
ered here. Section 3 discusses numerical methods for the design-
then-pricing problem. Section 4 defines a real-scale vehicle design
case study and compares the three methods on this example. Sec-
tion 5 provides further discussion of the model and results, and
Sec. 6 concludes.

2 Framework

This section presents a mathematical framework for design-
then-pricing problems. This framework has two primary compo-
nents: the demand model and the firm’s objective. We focus on
the Mixed Logit model of demand that captures consumer hetero-
geneity; see Ref. [53, Chap. 6] for more information. Several
recent studies have emphasized the importance of heterogeneity
to engineering design [39,47,54,55]. Following the market-
systems literature, we assume firms intend to maximize profits.

2.1 Mixed Logit Demand. Forecasting sales given design
decisions is a pivotal step in an engineering design paradigm that
includes profits as a design objective. Many researchers have inte-
grated discrete choice analysis (DCA) [53,56,57] with engineering
design optimization to serve this purpose [3,5,8,39,47,55,58–62].
DCA models can then be statistically estimated from either
market observations [53] or surveys [57] and yield choice proba-
bilities for each potential set of products, depending on design-
and-pricing decisions. Though relatively recently introduced to
engineering design, DCA has been one of the most important
techniques in economics and marketing for over 30 yr [56,63,64].

We focus on the Mixed Logit model of demand [53], which can
be defined as follows. Individual consumers are identified by a
vector of characteristics h from some set T . These individual
characteristics can include both observed demographic variables
as well as random coefficients [16,53,65] that characterize unob-
served individual-specific heterogeneity with respect to preference
for product characteristics. The relative density of individual char-
acteristic vectors in the population is described by a probability
distribution l over T ; we identify l with the probability density
function of this distribution (or probability mass function if T is
finite).

Fig. 1 Conceptual difference between a design-and-pricing model (left) and a design-then-
pricing model (right) for F product-designing firms. Dashed lines denote fixed components in
the respective model, while thick solid lines denote variable components.
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There are J products, each of which is defined by a vector of
product attributes yj 2 Y and a price pj� 0. An individual identi-
fied by h 2 T receives the utility Ujðh; yj; pjÞ ¼ uðh; yj; pjÞ þ Ej

from purchasing product j 2 f1;…; Jg, and U0ðhÞ ¼ #ðhÞ þ E0

for forgoing purchase of any of these products. Individuals choose
nothing, indexed by 0, or the product j 2 f1;…; Jg that maxi-
mizes their utility. Here u : T � Y � P ! ½�1;1Þ is a utility
function, # : T ! R is a valuation of the no-purchase option or
“outside good,” and E ¼ fEjgJ

j¼0 is a random vector of i.i.d. stand-
ard extreme value variables.

Demand for each product j is characterized by choice probabil-
ities Pj : ðY � PÞJ ! ½0; 1� derived from utility maximization
[53]. Given the distributional assumption on E, the choice
probabilities conditional on h 2 T are those of the Logit model
[53, Chap. 3]

PL
j ðh;Y; pÞ ¼

expfujðh; yj; pjÞg

expf#ðhÞg þ
XJ

k¼1

expfukðh; yk; pkÞg
(1)

The Mixed Logit choice probabilities PjðpÞ ¼
Ð

PL
j ðh; pÞdlðhÞ

follow from integrating over the distribution of individual charac-
teristics [53, Chap. 6]. The vector of Mixed Logit choice probabil-

ities for all products is denoted by PðY;pÞ 2 ½0; 1�J , where Y
denotes the matrix of all product attribute vectors and p denotes
the vector of all product prices. Differentiability of the choice
probabilities is discussed in Refs. [41,50].

2.2 Utility Specification. Assumptions on the utility func-
tions and demographic distributions are required for well-posed
design-and-pricing problems. This article employs a specifica-
tion closely related to that introduced by Caplin and Nalebuff
[66] as refined by Morrow [67] and Morrow and Skerlos
[41,68].

ASSUMPTION 1. For all j, there exist functions wj : T � P
! ½�1;1Þ and vj : T � Y ! ð�1;1Þ such that the systematic
utility function uj : T � Y � P ! ½�1;1Þ can be written
ujðh; y; pÞ ¼ wjðh; pÞ þ vjðh; yÞ, where vjðh; �Þ : Y ! ð�1;1Þ is
affine over Y. Furthermore, there exists a function i : T ! ð0;1�
such that wj : T � ½0;1� ! ½�1;1Þ satisfies, for all j and l-
almost every (a.e.) h 2 T ,

(a) wjðh; �Þ : ð0; iðhÞÞ ! ð�1;1Þ is twice continuously differ-
entiable, strictly decreasing, eventually decreases suffi-
ciently quickly [67,68], and has subquadratic second
derivatives [67,68],

(b) wjðh; pÞ # �1 as p " iðhÞ, and wjðh; pÞ ¼ �1 for all
p � iðhÞ.

(c) wjðh; pÞ þ log jðDwjÞðh; pÞj ! �1 as p " iðhÞ
Let i� denote the essential supremum of fiðhÞ : h 2 T g.
Several comments should clarify these technical assumptions:
Utilities: Allowing the utility functions to be product-

specific allows for the inclusion of product attributes or fea-
tures that are not explicitly design decisions, but are important
in determining demand. Utility functions that are strictly
decreasing in price are an intuitive and common economic
assumption; we discuss this further below. Twice continuous
differentiability of wj and vj will be necessary for twice contin-
uous differentiability of the choice probabilities, and is thus,
necessary to apply most techniques for continuous optimiza-
tion. The “eventually decreasing sufficiently quickly,”
“subquadratic second derivatives,” and strict monotonicity con-
ditions on wj are sufficient for the existence of profit-optimal
prices with simple Logit models [67,68], and thus, are natural
requirements to impose in the context of Mixed Logit models.
These conditions are weak and satisfied for the model types
used most often in practice.

Finite Purchasing Power: At first glance, including the map
i : T ! ð0;1� may seem unnecessarily complicated. Linear-
in-price utilities of the form u � �ap (e.g., Refs. [9,69]), for
example, have iðhÞ ¼ 1 for all h. i is, however, essential if
we are to allow finite limits on individual purchasing power.
For example, in the popular “Berry, Levinsohn, and Pakes”
model of the new vehicle market [16,25], i(h) represents indi-
vidual or household income. Other metrics of purchasing
power, such as household wealth or available credit, may be
more appropriate than income in other contexts. Regardless of
the empirical meaning of i(h), Assumption 1(b) states that
individuals do not purchase products that cost more than i(h)
and the probability they purchase a particular product vanishes
as that product’s price approaches i(h). Assumption 1(c) is
required to ensure that an individual’s Logit choice probabil-
ities are not only continuous in prices at i(h), but also continu-
ously differentiable; a requirement if simulated Mixed Logit
choice probabilities are to be continuously differentiable; see
Sec. 2.3 and Ref. [51]. Model formulations that do not need to
make assumptions (b) and (c) do exist, but currently face com-
putational challenges [70]. Addressing the case of finite pur-
chasing power (i*<1) properly can be important for robust
computational methods [51].

Distribution of Individual Characteristics: Common exam-
ples of l from the econometrics, marketing, and engineering
literature include finitely supported distributions (often empiri-
cal frequency distributions for integral observed demographic
variables or latent-class Conjoint-Logit models), standard con-
tinuous distributions (e.g., normal, lognormal, and v2), trun-
cated standard continuous distributions, and finite mixtures or
independent products of any of these types of distributions.
This generality addresses a wide variety of seemingly dispar-
ate examples (e.g., conjoint models and econometric random
coefficients models) within a single notation. In particular, this
generality allows us to use a single framework to treat both
“full” Mixed Logit models defined by some l with unbounded,
uncountable support and simulation-based approximations to
such models. Conditions on the distribution l and the associ-
ated utilities are required to ensure continuous differentiability
of the choice probabilities, and thus, profits; see Ref. [50].
Most of the existing DCA literature implicitly assumes such
conditions are satisfied, as similar conditions are required for
model estimation and the assumption is necessary for tractable
optimization methods.

Generality: Despite the detailed and technical nature of
Assumption 1, it represents a very broad class of Mixed Logit
models. We assume utilities are separable in prices and attrib-
utes; that is, wj does not depend on y. This assumption holds in
most empirical models currently used but is made only for sim-
plicity. The assumption that vjðh; �Þ is affine entails no loss in
generality, for the attributes can simply be redefined to ensure
that this holds [66]. For example, utilities with “interaction
effects” such as

vjðh; yÞ ¼ b1ðhÞy1 þ b2ðhÞy2 þ b3ðhÞy1y2

are affine in attributes defined as y0 ¼ ðy1; y2; y1y2Þ instead of
y ¼ ðy1; y2Þ.

The key assumption that potentially limits generality is assum-
ing that utility is a continuous function of price that decreases in
price. Economists almost always use this assumption; in particu-
lar, all econometric Mixed Logit models based on revealed prefer-
ences data we are aware of satisfy Assumption 1. There are,
however, Mixed Logit models that do not satisfy Assumption 1
because prices are discrete or the associated utilities are not
strictly decreasing in price. For example, marketing researchers
commonly build “latent-class” Logit models based on discrete
attribute and price “levels”; product design-and-price optimization
is different in this setting [71].
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While engineering design studies have also adopted this
approach, the estimated “part-worths” are commonly interpolated
to obtain a continuous utility function over prices or other product
attributes; see, e.g., Refs. [39,62]. Specifically, if a survey used
pð1Þ 	 � � � 	 pðLÞ as the L levels for price and estimated the result-
ing part-worth coefficients bg

p;‘ for price levels ‘ ¼ 1;…;L and
(latent) groups g ¼ 1;…;G, then a utility model over continuous
prices in any group may be specified through any interpolator
Bg

p : ½pð1Þ; pðLÞ� ! R of fbg
p;‘g

L
‘¼1 (Bg

pðpð‘ÞÞ ¼ bg
p;‘ for all ‘). If the

estimated part-worths increase in price over any successive levels,
so will any interpolator of the part-worths and thus, Assumption
1(a) will not hold. For example, one model used by Shiau and
Michalek [39] has part-worths that increase in price, and thus, an
interpolated utility function that does as well. Note that should
utility increase with price then the optimal pricing decision is triv-
ial: make price as high as possible.

We believe that models claiming that higher prices are pre-
ferred should be approached with caution. In general prices have
two functions: they are literally a cost associated with transfer of
ownership, but are also a signal of shared expressions or expecta-
tions of product value. High prices can signal to a potential cus-
tomer a level of product desirability and value that may be poorly
captured in observable attributes. The purchase of high-priced
products may also serve to signal individual characteristics (e.g.,
wealth) to the rest of the population, a phenomenon termed
“conspicuous consumption” [72]. Increasing preferences for pri-
ces are likely to be related to the signaling function of prices, not
literally the cost of ownership transfer. Empirical choice models
should attempt to disentangle these two effects as much as possi-
ble. One potential empirical mechanism might be to incorporate
interaction effects between price and product characteristics
assuming that signaling for value is effective only conditional on
characteristic values. For example, it is unlikely that the Honda
Fit can benefit from luxury price signaling, while very likely the
Lexus 480 h can. When preferences over prices reflect only
purchasing costs it is probably safe to assume lower prices are
preferred, in accordance with Assumption 1.

2.3 Simulation. Using Mixed Logit choice probabilities (and
their derivatives) in practice requires simulation [73]: integral
approximation using random draws from the demographic distri-
bution. We use simple sample averaging by drawing I 2N sam-
ples of the utility coefficients hi from the distribution l defined
above and solving the optimal design problem with Pj replaced by
the simulator [73]

1

I

XI

i¼1

PL
j ðhi;X;pÞ (2)

generated by these samples; more efficient techniques for simula-
tion than sampling directly from l exist [73]. The Law of Large
numbers guarantees that as I " 1, the simulated probabilities, Eq.
(2), converge to the true probabilities. Unfortunately, solutions to
the simulated optimal design problem using probabilities as
defined in Eq. (2) may not converge to the solution of the true
problem without additional conditions. Compactness of the feasi-
ble space is sufficient, as can be proven using the theory described
in Ref. [74]; see also Ref. [51].

We have found computations to be more robust by neglecting
the 1/I term in Eq. (2) as well as the corresponding derivatives
of the simulated Mixed Logit choice probabilities; Sec. 4
reports results only for this case. If I is much larger than J, as
could be required to ensure convergence, dividing by I could
result in loss of accuracy. Changing this scaling factor does not
affect solutions, but can affect solver performance; indeed,
some studies also include a “market size” that scales up the
choice probability approximations in addition to division by I
(e.g., Ref. [39]).

2.4 Profits and Optimal Design. Firm f designs the products
in J f 
 f1;…; Jg. Each product j 2 J f is defined by an

Nj-dimensional vector of product characteristics xj 2 RNj . We
assume that feasible characteristic vectors satisfy finite lower and
upper bounds lj;uj and some set of equality (gjðxjÞ ¼ 0) and in-

equality (hjðxjÞ � 0) constraints. Unit costs for product j are a
function of the design vector xj : cj : ½lj;uj� ! ½0;1Þ. We allow
the cost functions to be product-specific to capture situations
where there are fixed product-specific features that influence costs.
For each product j there is also a transformation, yj : ½lj; uj� ! Yj,

that defines product attributes given the design vector. We allow
this transformation to be product-specific to capture situations
where there are parameters not included in the set of design
variables that influence how product performance is perceived by
consumers. Both cj and yj are assumed to be twice continuously
differentiable. We often simply denote yjðxjÞ by yj, and YðXÞ
¼ fyjðxjÞgJ

j¼1 by Y. Finally, firm f has fixed costs cF
f � 0.

If both unit and fixed costs are independent of the quantity sold
[67], expected profits are given by

pf ðX; pÞ ¼ Sp̂f ðYðXÞ; cðXÞ;pÞ � cF
f (3)

for a market with S individuals, where

p̂f ðY; c;pÞ ¼
X
j2J f

PjðY;pÞðpj � cjÞ (4)

for any Y, c, p. Because scaling and shifting do not affect optimiz-
ers, we can neglect market size S and fixed costs cF

f in our analysis
below. Including a discount factor to harmonize revenues or costs
that occur at different points in time also simply scales profits
and/or costs, and is thus, left out of our formulation.

Optimal design-and-pricing can then be written as follows:

max p̂f ðX; pÞ
w:r:t: lj 	 xj 	 uj;

0 	 pj 	 i� for all j 2 J f

s:t: gjðxjÞ ¼ 0; hjðxjÞ � 0 for all j 2 J f

(5)

That is, the firm chooses a design and a price for each of the prod-
ucts it offers, taking its competitors’ designs and prices as fixed;
recall Fig. 1. Note that we treat i* as a price bound; this can be
viewed as an explicit constraint, but derives from the firm’s recog-
nition that setting pj above i* would result in a zero probability of
any individual choosing product j. Optimal design-then-pricing is
written as follows:

max p̂f ðX; pÞ
w:r:t: lj 	 xj 	 uj for all j 2 J f ;

0 	 pj 	 i� for all j 2 J
s:t: gjðxjÞ ¼ 0; hjðxjÞ � 0 for all j 2 J f

p 2 EðYðXÞ; cðXÞÞ

(6)

where p 2 EðYðXÞ; cðXÞÞ denotes the condition that prices, for all
products, are in “equilibrium” given the design decisions xj,
j 2 J f . Section 3.1 and Appendix A define and discuss equilib-
rium prices in more detail. Note that firm f’s design-then-pricing
problem concerns its own as well as its competitors’ product pri-
ces, rather than just the prices of the firm f’s own products. Firm f
is not literally choosing its’ competitors’ prices for them, but is
rather “forecasting” or “anticipating” competitors’ prices (as well
as its own) as an equilibrium response to its design choices.

Appendix A details how to extend this framework to situations
where the firm would explicitly constrain prices to lie within
some bounds. This could occur if, for example, the firm was
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uncomfortable pricing inconsistently with historical norms, does
not trust the demand model outside of some window around cur-
rent prices, or has some specific “markup constraints” imposed by
company policy, retailers, or even regulators [39]. Little changes
in our model should explicit bounds be adopted; however, we
believe that these bounds are best specified when given explicitly
by the consumer choice model [70].

3 Solving Design-Then-Pricing Problems

This section discusses three methods for solving Eq. (6), the
design-then-pricing problem. First is an implicit programming
method that treats prices as an intermediate quantity that is com-
puted for any set of designs. Second is a “MPEC” formulation
where the combined gradient is added as a constraint on all prices.
We prove that this formulation has spurious KKT points that
threaten to nullify the strong convergence properties of existing
solvers. Finally, we present a MPEC formulation with a coercive
representation of equilibrium prices that eliminates these spurious
KKT points. Before discussing these methods, we briefly review
several results pertaining to equilibrium pricing that are important
for the discussion that follows.

3.1 Equilibrium Prices. Methods for efficiently and reliably
solving design-then-pricing problems take advantage of efficient
and reliable methods for computing equilibrium prices. This sec-
tion briefly reviews existing work in this area, drawn largely from
Refs. [41,50,51]. See Appendix A, as well as these references, for
more information.

If the design decisions X are fixed, then Y and c are fixed and
each firm solves the pricing problem

max p̂f ðY; c;pÞ
w:r:t: 0 	 pj 	 i� for all j 2 J f

(7)

(Local) Equilibrium prices are prices p for which pf

¼ fpj : j 2 J f g (locally) solves Eq. (7) for all f. The set of all
(local) equilibrium prices for given product characteristics and

costs is denoted by ðE‘ðY; cÞÞEðY; cÞ.
If the choice probabilities are continuously differentiable in pri-

ces on ½0; i��J , then equilibrium prices p solve the combined KKT
conditions for every firms’ pricing problem. These combined con-
ditions can be written as the mixed complementarity problem
(MCP)1

0 	 p 	 i�1 ? � ð ~rpp̂ÞðY; c;pÞ (8)

where the “combined gradient,” ð ~rpp̂ÞðY; c; pÞ has components

ðð ~rpp̂ÞðY; c;pÞÞk ¼ ðD
p
k p̂f ðkÞÞðY; c;pÞ

and f(k) denotes the unique firm offering product k.
Unfortunately, solving Eq. (8) is an unreliable method for com-

puting equilibrium prices [41,51]. The fundamental problem is
that the profit derivatives, with respect to prices, vanish as prices
approach i*; see Lemma 1 below. This leads to the existence of
spurious KKT points of Eq. (8): points that are stationary in part
just because prices are large.

This problem can be corrected by solving

0 	 p 	 i�1 ? uðY; c;pÞ (9)

instead. The definition of the map uðY; c;pÞ is somewhat techni-
cal and provided elsewhere; see Appendix A and Refs. [41,50,51].
The effect of this transformation is as follows: the Jacobian matrix
of the choice probabilities with respect to prices can be “split”
into a diagonal matrix and a full matrix, where the diagonal matrix
contains the key components of the choice probability derivatives
that vanish as prices become large. By factoring this diagonal ma-

trix out of ð ~rpp̂Þ we obtain u that does not vanish as prices
become large. In this way, Eq. (9) is essentially equivalent to
Eq. (8) but has solutions with components equal to i* only when
this is profit-maximizing [51]. Moreover, for simulators u can be

continuously differentiably extended to all of RJ in such a way

that if p solves uðY; c;pÞ ¼ 0 then the projection of p onto ½0; i��J
solves Eq. (9) [51]. Thus, we can presume, without loss of gener-
ality, that the smooth nonlinear system uðY; c;pÞ ¼ 0 is defined
for all prices and provides a first-order condition for equilibrium
prices that eliminates “spuriously” stationary prices that are sta-
tionary only because some prices are large. Appendix A details
how this logic can be extended for problems with explicit bounds
on prices, as in Ref. [39]. The reformulation in Eq. (9) also applies
to problems with strategic retailers (e.g., Refs. [5–7,34,35,42]).

3.2 Implicit Programming. One approach to solving Eq. (6)

assumes that p� 2 E‘ðY; cÞ can be computed for any (Y, c) and
then treats prices as an intermediate variable

max p̂�f ðXÞ
w:r:t: lj 	 xj 	 uj for all j 2 J f

s:t: gjðxjÞ ¼ 0; hjðxjÞ � 0 for all j 2 J f

(10)

where p̂�f ðXÞ ¼ p̂f ðX;p�ðXÞÞ and p�ðXÞ 2 E‘ðYðXÞ; cðXÞÞ are
local equilibrium prices written as a function of X. Local, rather
than proper, equilibrium is used here because it will be impracti-
cal, in general, to guarantee computations of equilibria, as
opposed to local equilibria. We follow Luo et al. [46] in calling
solution of Eq. (10) an implicit programming method because of
the theoretical reliance of this approach on some form of Implicit
Function Theorem (see, e.g., Refs. [46,77]) to ensure that equilib-
rium prices are at least locally unique and, in some sense, differ-
entiable in X.

Implicit programming has been applied successfully to solve
design-then-pricing problems. Shiau and Michalek [39] discuss a
variant of this approach where equilibrium prices are computed
via an iterated optimization strategy–“Variational Relaxa-
tion”–following Choi et al. [31] rather than solution of Eq. (8) or
Eq. (9). Frischknecht et al. [47] optimize vehicle designs by com-
puting equilibrium prices as an intermediate variable using a
fixed-point method derived in Ref. [41] based on Eq. (9); we use
the same technique in our numerical results. This iteration is the
fastest known method for reliably computing equilibrium prices
with Mixed Logit models [41,51].

Implicit programming may only be practical when stationary
prices are characterized by a smooth nonlinear system. Specifi-
cally, most conventional solvers for solving Eq. (10) would
formally require that p*(X) is twice continuously differentiable in
Xf, to ensure that p̂�f is twice continuously differentiable [52]. The
review in Sec. 3.1 suggests that this is not a serious obstacle for
the models considered in this article; however, the differentiability
requirement should formally rule out problems with prices con-
strained by explicit bounds. In general, the first-order conditions
for equilibrium only have piecewise-smooth parametric solution
maps and specialized methods may thus, be required to ensure
global convergence to optimal designs [46]. Moreover, even if
p*(X) is defined by a smooth nonlinear system, p*(X) may still
fail to be even differentiable at some X if the Jacobian of the non-
linear system used to solve for p*(X) is singular at some point.
Conditions ensuring nonsingularity of the Jacobian of u with
respect to prices are not known.

1The real-valued MCP “l	 x	 u?F(x)” is solved by x satisfying one of the
following: x � [l,u] if F(x)¼ 0, x¼ l if F(l)> 0, or x¼ u if F(u)< 0. Note the
similarity to the KKT conditions for bound-constrained optimization. In fact, if F(x)
is the derivative of some function f(x), then l	 x	 u?F(x) are the KKT conditions
for min f(x) subject to l 	 x 	 u. See Refs. [75,76] or Appendix B for a
generalization to vector-valued MCPs.

Journal of Mechanical Design AUGUST 2014, Vol. 136 / 081002-5

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 12/17/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Moreover, equilibrium prices must be computed, using itera-
tive methods, for every trial vector of designs chosen by an
optimizer. Introducing these computations as an “inner loop”
may become computationally prohibitive for large problems,
especially if choice probabilities, profits, and profit gradients in
equilibrium are to be evaluated accurately. In our experience,
part of this expense can be mitigated by “warm starting” equilib-
rium computations at prices that were in equilibrium for previous
design variable values. But because equilibrium prices can only
be approximated, treating prices as an intermediate variable can
also introduce noise into the optimization. This will be especially
problematic if finite-differences are used, as noise in the approxi-
mate solves can amplify truncation errors associated with finite
differencing. Thus, the derivatives of equilibrium prices with
respect to design decisions must be computed explicitly using
the standard Implicit Function Theorem if this method is to be
used. Computing these derivatives, when they exist, requires
defining and solving a J� J linear system. Even if this is possi-
ble it may incur a significant computational burden and introduce
more numerical error when there are many products. We have
found that equilibrium prices must be computed to very tight tol-
erances to ensure reliable solution of the design-only problem;
see Sec. 4 for details.

3.3 Combined Gradient Constrained MPEC Approach.
Almost two decades of research concerning MPECs suggests that
the quantities in equilibrium should be considered problem varia-
bles subject to some constraints that represent equilibrium. The
constraints used are typically only a first-order stationarity condi-
tion, creating a mathematical program with complementarity con-
straints (MPCC) [78–80]. Solving this MPCC does not guarantee
that subgame variables are in equilibrium at solutions to the
MPCC when the subproblems are nonconvex, as is the case with
design-then-pricing. The potential advantage is that prices can be
out-of-equilibrium for the majority of solver iterations. Moreover,
the derivatives of the equilibrium constraints do not threaten to
introduce noise into the optimization in the same manner as the
approximately computed equilibrium prices and their derivatives
as required in implicit programming.

In the case of design-then-pricing, substitution of Eq. (8) yields
the following problem, a special case of the form used in Ref. [39]

max p̂f ðX;pÞ

w:r:t: lj 	 xj 	 uj for all j 2 J f ; p � 0

s:t: gjðxjÞ ¼ 0; hjðxjÞ � 0 for all j 2 J f

ð ~rpp̂ÞðX; pÞ ¼ 0

(11)

where ð ~rpp̂ÞðX;pÞ ¼ ð ~rpp̂ÞðYðXÞ; cðXÞ;pÞ is a more compact
notation for the combined gradient of profits (with respect to pri-
ces) as a function of design decisions. Lemma 1 proves that
Eq. (8), formally a MCP, can be thought of as a smooth nonlinear
system when we exclude explicit bounds on prices (and no price
is profit-optimally zero [50]). Thus, while we are literally includ-
ing an “equilibrium constraint”, this constraint is not as difficult
as the complementarity constraints typically considered in the
MPCC literature. Problems with explicit bounds on prices will
have proper complementarity constraints that must be handled
appropriately [80]. We do not view this as a fundamental impedi-
ment to solving design-then-pricing problems. Sequential quad-
ratic programming (SQP) solvers like SNOPT [81], applied in our
numerical results, retain many of their strong convergence proper-
ties for MPCCs formulated in the correct way [78]. Interior-point
(IP) [49,82] methods can also perform very well on MPCCs when
the complementarity constraints are included using objective
penalization [79]. Augmented Lagrangian techniques have also
shown promise in their ability to handle problems with degenerate
constraints, including MPCCs [83].

3.4 Spurious Solutions in Design-then-Pricing. Equation (11),
like Eq. (8), also has spurious KKT points that can be computed
by commercial solvers. We illustrate this situation with a two-
vehicle instance of the model described below in Sec. 4.1. A
firm offers one vehicle, and has one competitor offering one ve-
hicle. The firm chooses the vehicle’s 0-60 acceleration and price,
with a constraint that uniquely defines fuel economy. Figure 2
plots the max norm of the profit gradient over feasible accelera-
tions and prices from $10,000 to $1,000,000. Note that as price
increases, the profit gradient vanishes for any value of accelera-
tion. As we clarify below, this behavior suggests that the KKT
conditions would be asymptotically satisfied for large prices and
any value of acceleration. Moreover, note that both components
of the profit gradient have magnitude less than 10–6 if price is
above $400,000, regardless of acceleration. Hence, many more
points may “numerically” satisfy the KKT conditions in the
sense of satisfying numerical termination criteria used in many
existing solvers.

The existence of these spurious KKT points is a salient issue
for design-then-pricing. Our numerical example in Sec. 4 shows
that these spurious KKT points can be a significant obstacle to
practical computations in large markets. However, Fig. 2 shows
that spurious KKT points exist for problems of any scale, even
with a single product. Moreover, the rate at which the magnitude
of the profit gradients vanish depends sensitively on the problem.
Repeating this example using a mean price coefficient, one magni-
tude larger than that used in Sec. 4.1, the profit gradient is
“numerically” zero (i.e.,< 10–6) for prices larger than $40,000,
instead of $400,000. Alternatively, assuming the firm faces 471
competing vehicles, instead of one, and using the original price
coefficient leads to profit gradients that are numerically zero for
prices larger than $250,000. Note also that spurious KKT points
could still exist when using explicit bounds on prices. Specifically,
should the upper bound on prices be larger than the smallest price
such that the profit gradient is numerically zero, then solvers could
still terminate at spurious KKT points even with explicit bounds
on prices. These issues motivate a clearer identification of the
problem and its resolution.

We develop a better understanding of this issue by examining
the KKT conditions for Eq. (11), which can be written as the fol-
lowing MCP:

Fig. 2 Illustration of Lemma 1. Contours denote the level sets
of the max norm ( xk k‘ 5 maxnf xnj jg) of the profit gradient for a
two-vehicle design-then-pricing problem as defined in Sec. 4.1.
Labels denote the value of the norm over the contours drawn.
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lj 	 xj 	 uj? Lx
j ðX;p;lj;l

p
f Þ

1 < lE
j <1? gjðxjÞ

0 	 lI
j ? hjðxjÞ � 0

9>=>; for all j 2 J f

0 ¼ �ðrpp̂f ÞðX; pÞ þ ðDp ~rpp̂ÞðX; pÞ>lp
f

0 ¼ ð ~rpp̂ÞðX;pÞ

(12)

where lj ¼ ðlE
j ; l

I
j Þ and lp

f are Lagrange multipliers for the design
variable equality constraints, design variable inequality con-
straints, and equilibrium price constraints (respectively) and

Lx
j ðX; p; lj; l

p
f Þ ¼ �ðrx

j p̂f ÞðX; pÞ � ðDx
j

~rpp̂ÞðX;pÞ>lp
f

� ðDx
j gjÞðxjÞ>lE

j � ðDx
j hjÞðxjÞ>lI

j

where rx
j and Dx

j denote the gradient and derivative with respect
to the product j’s design decisions. See Appendix B for more
details on this MCP notation.

Taking all the multipliers to be zero, Eq. (12) reduces to

lj 	 xj 	 uj?� ðrx
j p̂f ÞðX; pÞ

gjðxjÞ ¼ 0; hjðxjÞ � 0

)
for all j 2 J f

ðrpp̂f ÞðX;pÞ ¼ 0; ð ~rpp̂ÞðX;pÞ ¼ 0

Lemma 1 below suggests that Eq. (12) can be approximately
satisfied by making pf sufficiently large, for any feasible design
vectors xj; this shows the generality of the problem illustrated by
Fig. 2.

While this will be true for most Mixed Logit models, we pro-
vide a result for simulations of Mixed Logit models that are
applied in computations; see Sec. 2.3.

LEMMA 1. Suppose the Mixed Logit model is a simulator of a
Mixed Logit model satisfying Assumption 1. Then, as pk " i�,
the following hold: (i) ðDp

k p̂f Þ ! 0 for any firm f, even if k 62 J f ;

(ii) if k 2 J f ; ðrx
kp̂f Þ ! 0; (iii) ðrx

j
~rpp̂Þ ðX; pÞ ! 0; (iv)

ðDp
l Dp

k p̂f ðkÞÞ ðX; pÞ ¼ ðDp
kDp

l p̂f ðlÞÞðX; pÞ ¼ 0.

Proof. The choice probabilities are a weighted sum of Logit
choice probabilities; the result thus, follows from the correspond-
ing result for Logit models given in Appendix C. �

COROLLARY 1. Suppose the Mixed Logit model is a simulator of
a Mixed Logit model satisfying Assumption 1. As pj " i�, the
KKT conditions (12) for Eq. (11) converge to those of the design-
then-pricing problem without product j, regardless of whether
eliminating product j from the product portfolio is actually profit-
optimal. More generally, let J �f 
 J f ;J

�

f ¼ J f nJ �f , and suppose

ðxj; pj;lE
j ;l

I
j ;l

p
j Þ, for all j 2 J �f , satisfy the KKT conditions for

Eq. (11) assuming firm f only offered the products in J �f . Then,

these values appended with ðxj;1; 0; 0;lp
j Þ for any feasible xj and

any lp
j 2 R, for all j 2 J �f forms a KKT point for Eq. (11).

See Appendix C for the proof, that is a relatively straightfor-
ward application of Lemma 1 (despite requiring a complicated
notation).

Corollary 1 states that the KKT conditions for Eq. (11) “nest”
the KKT conditions for any subproblems formed by eliminating
any subset of the products offered by firm f, even though eliminat-
ing these products may not be profit-optimal. Computationally the
existence of these potentially spurious KKT points threaten to
degrade the reliability of SQP or IP solvers, even though SQP and
IP solvers do more than explicitly solve the KKT conditions. This
theoretical conclusion is confirmed in our numerical results
below.

3.5 A Well-Posed MPEC Approach. Using the reformula-
tion of the stationarity condition for equilibrium prices in Eq. (9)

eliminates spurious KKT points from the set of computable solu-
tions to Eq. (11). Specifically, instead of Eq. (11), consider

max p̂f ðX;pÞ
w:r:t: lj 	 xj 	 uj for all j 2 J f ; p � 0

s:t: gjðxjÞ ¼ 0; hjðxjÞ � 0 for all j 2 J f

uðX; pÞ ¼ 0

(13)

Problems (11) and (13) are functionally equivalent because the
objective has not been changed and the feasible sets are equivalent
except for the excision of spurious KKT points: because the KKT
conditions for Eq. (13) contain the equation uðX; pÞ ¼ 0, that has
no spurious solutions [41,50,51], there are no spurious KKT
points. Formally, our assumption that the feasible space for design
decisions is bounded is required to retain this property of u with-
out making further assumptions on the choice and cost model.

3.6 Spurious Solutions in Design-and-Pricing. Lemma 1
and its corollary regarding spurious KKT points applies equally
well to design-and-pricing. The results in Sec. 4 show that this
may be an impediment to reliable computations.

Equation (13) can be adapted to obtain a well-posed formula-
tion of design-and-pricing

max p̂f ðX;pÞ
w:r:t: lj 	 xj 	 uj; pj � 0 for all j 2 J f

s:t: gjðxjÞ ¼ 0; hjðxjÞ � 0 for all j 2 J f

uf ðX; pÞ ¼ 0

(14)

where uf (X, p) are the components of u corresponding only to
the products offered by firm f. Because uf (X, p)¼ 0 implies satis-
faction of the first-order condition for profit-maximizing prices for
firm f, the additional constraint in Eq. (14) is redundant and will
have zero Lagrange multipliers at any KKT point. However,
because uf (X, p)¼ 0 rules out large prices that are not profit-
maximizing, Eq. (14) does not have spurious KKT points.

3.7 Sufficient Conditions. Solving either MPEC formulation,
Eqs. (11) and (13), only ensures that p 2 SðYðXÞ; cðXÞÞ at opti-
mality, while the true goal is to solve for optimal designs with
p 2 E‘ðYðXÞ; cðXÞÞ. Similarly, the implicit method solves a non-
linear system equivalent to the first-order condition for equilib-
rium prices at X, that in principle only guarantees that
p�ðXÞ 2 SðYðXÞ; cðXÞÞ. See Ref. [84] for an example design-
then-pricing problem in which solvers may compute solutions that
do not have prices in equilibrium because some firms profits are
locally minimized, not maximized. Thus, verifying a solution to
Eqs. (10), (11), and (13) is in fact a solution to Eq. (6) requires
checking a SOSC for equilibrium prices.

Shiau and Michalek [39] also recognize this, but propose a heu-
ristic SOSC check that does not necessarily identify local optimal-
ity. Explicitly, they propose to re-optimize firms’ profits, with
respect to prices alone, at a first-order solution to the design-then-
pricing problem. If no higher value of profits is obtained, they
assume the resulting point is an equilibrium. The primary concern
with this approach is that if the first-order condition for equilib-
rium is solved for the prices used in the starting condition in a
firm’s price-only optimization then the optimizer should terminate
immediately regardless of whether the firm’s current prices locally
maximize or minimize profits. We could perturb initial prices, but
there is little to say how far we should perturb prices. Worse, if
we had originally computed a spurious KKT point then both the
first and second partial derivatives of profits will be very small in
a neighborhood of the computed point. Thus, this re-optimization
check is unlikely to resolve spurious solutions should one be
computed.
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A sufficient condition for local optimality is that a particular
submatrix H0f of every firms’ Hessian matrix Hf, with respect
to changes in their own prices alone, is negative definite; see
Chap. 12 in Ref. [52] for general information on the SOSC. The
appropriate submatrix to use consists of those rows and columns
corresponding to prices set by the firm within (0, i*) or, in the case
of explicit bounds, within the interior of the bounded region (see
Appendix A). This check is likely to be faster and more robust
than re-optimizing firms’ profits with respect to prices alone.
Moreover, re-optimizing with SQP or IP methods uses (or approx-
imates) the same information: local curvature information cap-
tured in firms’ Hessians. Verifying the negative definiteness of H0f
can be accomplished with a single Cholesky factorization applied
to �H0f . Cholesky is relatively fast, stable against numerical
errors, and the standard method for testing definiteness [85–87].

Because negative definiteness of H0f is only sufficient, there
could be cases where H0f fails to be negative definite and the cur-
rent value of pf locally maximizes firm f’s profits. However, nega-
tive semidefiniteness of H0f is necessary [52]. Thus, if we fail to
identify that H0f is negative definite, showing H0f to be indefinite
proves that the current prices are not in equilibrium. If the original
Cholesky factorization failed the factorization up to termination
can often be used to determine a direction of positive curvature–a
vector d such that d>Hf d > 0 [88]—proving that Hf is indefinite
rather than negative semidefinite. Alternatively, several techni-
ques may reveal semidefiniteness: Cholesky factorization with
pivoting, an inertia-revealing symmetric indefinite factorization,
or identification of the null-space of H0f could used [85,87]. How-
ever, identifying semidefiniteness is likely to be sensitive to two
types of numerical errors: errors in the linear-algebraic methods
used and in the approximation of the Hessian matrices themselves.
We believe the latter category of errors are likely to dominate
purely numerical errors. In fact, we may not be able to identify if
H0f is semidefinite but rather only “sufficiently” negative definite
or “sufficiently” indefinite, relative to the level of errors involved
in computing H0f . These issues require further research, as practi-
cal SOSC checks with “noisy” function evaluations have not yet
been investigated.

Any factorization-based SOSC checks presume that the Hessian
matrices for each firm are available. We have developed formulas
and code for computing these matrices in a generic Mixed Logit
simulator, and use this in our numerical example below. Neither
formulas nor code are provided here, but both are available by
request. There are “Hessian-free” methods for checking the SOSC
based on the same linear-algebraic ideas, including Cholesky
factorization, that are more efficient if the Hessian is not known
explicitly [88].

It is not so important to verify a SOSC for the optimal design
problem, Eq. (6), itself. Modern solvers cannot compute local
minimizers to a maximization problem and are likely to avoid sad-
dles. Some algorithms use of directions of negative curvature to
guarantee convergence to a second-order necessary point, fully
avoiding saddles [89].

4 Comparison of Methods. This section presents results for
a design-then-pricing problem based on the 2006 new vehicle
market, described below. A firm chooses the acceleration, fuel
economy, and technology content of a subset of vehicles expect-
ing prices for all vehicles on the market to be set in equilibrium as
a result of these decisions. All computational results below were
generated using the SNOPT SQP software [81]. Problem data are
programmed in C and all runs were executed on a single Mac Pro
tower (OS X version 10.6.8) with dual 6-core 2.66 GHz processors,
64 GB of RAM, and 1333 MHz bus. SNOPT’s optimality and fea-
sibility tolerances were both set to 10–6, and 1000 major iterations
were allowed. We have also found this example problem to be
solvable with the KNITRO software implementing an IP method
[82]; however, KNITRO can take significantly longer to solve
than SNOPT. In general, SQP strategies should be expected to

perform better on our example problem because the solutions are
highly constrained.

4.1 Vehicle Design Model and Mixed Logit Utility
Specification. This section defines our real-scale vehicle portfolio
design problem. In total, 21 automakers (“firms”) offer 472
vehicles (i.e., F¼ 21 and J¼ 472). We focus on firm 1, who offers
29 vehicles expecting prices for all vehicles to be set in equilib-
rium given their design decisions. Fixed vehicle characteristics for
all other vehicles are drawn from calendar year 2006 vehicle mar-
ket data; the design and choice models discussed below are
adapted from Ref. [9]. This model is not intended to be a high-
fidelity model of vehicle design; our intended application of this
model is a comparison of numerical methods in a large market.

Each vehicle j is described by its 0-60 acceleration time (aj, in
s), fuel economy (ej, in mpg), “technology content” (tj, unitless)
and Manufacturer’s Suggested Retail Price (p, 104$), referred to
below simply as “price”; body style, footprint, and weight are
fixed, vehicle-specific parameters. Technology content is a contin-
uous index of the level of cost-effective technology features
included in the vehicle; see Ref. [9] for more details. Vehicle j has
body-style specific bounds on aj, ej, and tj derived from the data
discussed in Ref. [9].

Models of vehicle performance and costs are as follows: Vehi-
cle j’s fuel economy, acceleration, and technology content are
related through a single equality constraint gj(e, a, t)¼ 0 where

gjðe; a; tÞ ¼
1000

e� 3:46
� bbðjÞ;1 � bbðjÞ;2 expf�ag � bbðjÞ;3t

� bbðjÞ;4a2t� bbðjÞ;5wj � bbðjÞ;6wja (15)

In Eq. (15), wj is vehicle j’s weight (in 1000 lb) and b(j) is vehicle
j’s body style. The body-style specific b coefficients are given in
Ref. [9]. Unit costs are also a function of acceleration/fuel econ-
omy performance, given by a function cj(e, a, t) as given in the
following equation:

cjðe; a; tÞ ¼ bbðjÞ;1 þ bbðjÞ;2 expf�ag þ bbðjÞ;3t

þ bbðjÞ;4wj þ bbðjÞ;5wja (16)

Again, coefficients are drawn from Ref. [9]. These models were
estimated using detailed engineering simulations from AVL
Cruise in conjunction with confidential technology production
cost data provided to NHTSA by automakers in advance of the
2012–2016 fuel economy rulemaking [90].

We consider a version of the Mixed Logit model estimated in
Ref. [9]. Vehicle-specific utility functions uj are given by

ujðe; a; pÞ ¼ �apþ be

e
þ ba

a
þ bf fj þ nj � # (17)

where fj is vehicle j’s footprint (in 1000 in2), nj is a product-
specific utility determined in estimation (see, e.g., Ref. [16]),
# ¼ �8:0903 represents a constant utility of the outside good, and
the coefficients a;be; ba; bf are random. The price coefficient is
a ¼ 0:4591þ 0:1756=i� 0:0377Vj j, where i denotes household
income and V�N(0,1), where N(l, r) denotes a normal distribu-
tion with mean l and variance r2. We assume income is
greater than $10,000 and is drawn from an empirical frequency
distribution based on data from 2006’s Current Population
Survey [91]. The attribute coefficients have the following
distributions: be � Nð�36:77; 0:022Þ; ba � Nð11:262; 0:0321Þ,
and bf � Nð2:4541; 0:0393Þ. See Ref. [9] for more information.
The results for all methods discussed below are obtained using a
single simulator derived from 1000 samples of a, be, ba, bf.

4.2 Computational Statistics. Figure 3 illustrate statistics
concerning 1000 attempted solves of the vehicle design-then-
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pricing example presented above with different initial conditions;
see also Table 1 in Appendix D. Each method discussed in Sec. 3
is employed. Implicit programming (Sec. 3.2) is abbreviated as
“IMPL,” an MPEC formulation with the combined gradient
(Sec. 3.3) as “CG-MPEC,” and an MPEC formulation with the u
map (Sec. 3.5) as “u-MPEC.” Spurious KKT points were identi-
fied with explicit verification of the negative definiteness of firms’
profit Hessians with respect to prices. Two types of initial condi-
tions were employed in our trials. In random initial conditions, we
drew designs and prices as independent, uniformly distributed
draws. Design variables were drawn from within their body-style
specific bounds, and prices were drawn between $0 and $100,000.
In “smarter” initial conditions we also drew designs uniformly
randomly from their bounds, but drew vehicle j’s price from $0
and cj where cj is the cost for vehicle j corresponding to the ran-
domly drawn design variables. In this way, the “smarter” initial
conditions have initial prices that are no greater than costs, and
thus, strictly less than equilibrium prices for the initial designs

[41,50]. Because the spurious solutions identified in Sec. 3.4 con-
cern prices that are too high, setting initial prices less than costs
guarantees that any spurious solutions obtained are not a conse-
quence of poor initial conditions alone.

The reliability with which design-then-pricing problems can be
solved depends greatly on the method chosen; see Fig. 3, left.
With a tolerance of 10–6 on computations of equilibrium prices,
implicit programming is unreliable solving the problem in just
over 13% of trials; achieving a nearly 100% success rate (failing
in only one trial out of 1000) requires computing equilibrium pri-
ces to a tolerance of 10–12, with correspondingly increased com-
pute times. The feasibility of using such tight tolerances on
equilibrium pricing computations will depend greatly on problem
size, scaling, and the associated limit on numerical accuracy
that can be expected in computing u as a function of prices. CG-
MPEC performs very poorly, never computing a nonspurious
solution with random initial conditions and computing a true solu-
tion in only 1% of trials with the “smarter” initial conditions. It is

Fig. 3 Computational comparison of performance of the implicit programming
and MPEC methods on 1000 trials started at different initial conditions for a single
set of 1000 samples. Implicit programming was implemented computing equilib-
rium to tolerances of 10–6, 10–9, and 10–12, abbreviated IMPL(10–6), IMPL(10–9), and
IMPL(10–12), respectively. Optimal design problems solved to tolerances of 10–6.
CG-MPEC was started at both random and the “smarter” initial conditions, abbre-
viated CG-MPEC(r) and CG-MPEC(c), respectively; similarly with u-MPEC. (Left)
Success rate captures both SNOPT successes and computation of an equilibrium,
that are the same for all methods except the CG-MPEC approach. Dashed boxes
represent the SNOPT success rate for CG-MPEC including spurious solutions.
(Right) Mean compute times include only successful runs, with the exception of
CG-MPEC(r) for which there were no successful runs.

Table 1 Computational comparison of performance of the implicit and MPEC methods from 1000 trials starting at two types of ran-
dom initial conditions. See Sec. 4 for more details.

IMPL(10–6) IMPL(10–10) IMPL(10–12) CG-MPEC u-MPEC

Problem size statistics
Number of variables (#) 116 116 116 588 588
Number of constraints (#) 58 58 58 530 530
Number of nonzero derivatives (#) 261 261 261 265,422 265,422
Random initial conditions
SNOPT successes (%) 13.1 56.2 99.9 94.4 100.0
True successes (%) 13.1 56.2 99.9 0.0 100.0
Computed a spurious KKT Point (%) 0.0 0.0 99.9 94.4 0.0
SNOPT failures (%) 86.9 43.8 0.1 5.6 0.0
Mean (median) time, all runs (s) 103.3 (92.4) 122.7 (104.2) 145.4 (126.0) 344.9 (162.8) 58.1 (53.0)
Mean (median) time, successes (s) 100.7 (82.9) 119.3 (103.2) 140.8 (125.9) – (–) 58.1 (53.0)
“Smarter” initial conditions
SNOPT successes (%) — — — 98.9 100.0
True successes (%) — — — 1.2 100.0
Computed a trivial KKT point (%) — — — 97.7 0.0
SNOPT failures (%) — — — 1.1 0.0
Mean (median) time, all runs (s) — — — 189.2 (104.3) 52.5 (47.4)
Mean (median) time, successes (s) — — — 331.5 (139.9) 52.5 (47.4)
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important to emphasize that when CG-MPEC computes a spurious
solution, SNOPT still terminates successfully. That is, if we relied
on solver termination conditions alone, we would be misled into
believing we had solved the design-then-pricing problem in 94%
and 99% of runs with the random and “smarter” initial conditions
(respectively) when, in fact, we had computed a spurious solution.
u-MPEC succeeds in computing optimal designs with prices in
equilibrium in all trials for both types of initial conditions.

Mean run times also vary significantly across methods. Fig. 3,
right, plots mean compute times for all methods; Table 1 includes
range statistics. u-MPEC is the fastest method, comparing com-
pute times either across all runs (i.e., including failures) or com-
paring across successful runs only. When starting from a random
initial point u-MPEC takes under 1 min while the implicit (10–12)
method takes over 2 min, on average; CG-MPEC takes 5 3/4 min
on average, but again only computes spurious solutions. Note that
the speed-up observed for u-MPEC occurs despite the fact that it
literally solves a much larger problem than the implicit program-
ming approach, with 5 times the variables, 9 times the constraints,
and 1000 times the number of nonzero objective and constraint
derivatives (Table 1). In reality the problem sizes are comparable;
the implicit method “hides” the large problem size from the solver
by computing equilibrium prices and their derivatives within
more expensive function evaluations. From the “smarter” initial
points u-MPEC takes 47 s on average, while CG-MPEC takes
330 s (when successful).

4.3 Solution Details. In all, we computed roughly 307 dis-
tinct solutions to Eq. (6). Without product-specific vehicle param-
eters left fixed in the design problem, permuting the positions of
any two-vehicle designs (from within sets of vehicles with a
specific body style) in the list of vehicles leads to an equivalent
solution. Thus, permutations in product order might create a large
number of equivalent solutions up to permutation. Because we
have product-specific parameters, however, we see a large number
of distinct solutions.

Figure 4 shows the likelihood of computing profits within a
given percentage of the apparent globally maximal profits using
u-MPEC. Each step up denotes a local optimum. Over 30% of all
successful runs converged to the global maximum, while roughly
80% converge to a solution that has a value of profits within 90%
of the global maximum. All local optima in this problem are

characterized by 17 of firm 1’s 29 vehicles with particular body
styles (minicompact, subcompact, and compact cars) with tech-
nology content at various combinations of the upper and lower
bounds: not adopting any technology (tj¼ 0) or complete adoption
of technology (tj¼ 42). In principle, there might be 217¼ 131,072
such local solutions (compared to the 307 we believe we com-
pute). Vehicles offered by firm 1 with body styles other than these
three had unique designs over all local solutions, solutions that
were again bound-constrained; some of these vehicles had no
technology adopted, and some had all technology adopted. When-
ever a local solution has technology content at its lower bound (0)
on some minicompact, subcompact, or compact car, fuel economy
for that vehicle is high; when a local solution has technology con-
tent at its upper bound (42), fuel economy is low. This represents
a “configuration” trade-off: if technology is adopted, the cost and
demand models suggest that this investment is best utilized to
maximize acceleration performance, rather than fuel economy.
This tradeoff is generally reflective of trends that appear in real
vehicle markets, but is certainly a feature determined by the sim-
plified model we adopt to enable an example with a large-scale
market.

4.4 Comparison to Design-and-Pricing. Design-and-pricing
outcomes depend on what the firm assumes regarding fixed com-
petitors’ prices. We investigate four “scenarios” regarding com-
petitors’ product prices labeled as follows: “1”: competitors
price their products at 1 or, equivalently, the firm ignores com-
petitors; “p*(X0)”: competitors price their products in equilibrium
given designs as in the data; “p0”: competitors price their products
as given in the data; “0”: competitors give away their products for
free. These scenarios reflect the extremes of the various assump-
tions that could be made regarding competitor pricing behavior
without anticipating reactions to design changes. For each sce-
nario, we compute optimal designs and prices for firm f’s products
holding competitors’ designs and prices fixed; i.e., we solve
Eq. (5). Any solution defines an “expected” profits from optimal
design “pe

f ”, ignoring potential impacts of pricing competition at a
later date. Note that we do not use the term “expected” here to
mean an average over possible outcomes weighted by their likeli-
hood, as is meant in probability theory. We then also compute
equilibrium prices for all vehicles using the computed optimal
designs for firm f’s vehicles, obtaining an associated profits “p�f ”
in equilibrium after pricing competition occurs.

In comparing design-and-pricing to design-then-pricing, there
are three important perspectives to keep in mind: First, Sec. 3 sug-
gests that even design-and-pricing problems may not be solved
reliably without regularization. Second, “expected” profits from
design-and-pricing may change when pricing competition actually
occurs. Third, profits in equilibrium from optimal design decisions
made without anticipating pricing competition may, or may not,
differ from profits obtainable by anticipating pricing competition
even if expected profits differ. Our results are focused on these
three perspectives.

Figure 5 plots success rates for 1000 attempted solves of
Eq. (5) with random initial conditions and a tolerance of 10–6 for
both optimality and feasibility. As with design-then-pricing,
SNOPT successfully solves Eq. (5) in every run but does not
always compute prices that are profit-optimal: when the firm
ignores its competitors (scenario “1”), 82.7% of these solves
resulted in designs and prices that were not profit-optimal because
some price was too large; when the firm assumes that its competi-
tors give away their products (scenario “0”), 21.7% of these solves
resulted in designs and prices that were not profit-optimal because
some price was too large. Regularized computations using
Eq. (14) always succeeded and always computed prices that were
locally profit-optimal.

Figure 6 plots the mean anticipated gain (or loss) in profits over
the 1000 attempted solutions with random initial conditions, tak-
ing results from the regularized solves; the successful solves

Fig. 4 Cumulative distribution function for computing profits
in the design-then-pricing model within a given percentage of
the apparent globally maximal profits over 1000 trials. The gray
shading represents the area under this curve for comparison
with Fig. 7.
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without regularization have similar statistics. These results illus-
trate that the “accuracy” of expected profits when neglecting
eventual pricing competition depends sensitively on the assump-
tion held about competitors’ current prices. If competitors’ prod-
ucts are ignored (scenario “1”), almost all profits expected from
design-and-pricing decisions are lost. Failure to anticipate pricing
reactions would appear, after-the-fact, to be a serious mistake in
this extreme case. If competitors’ are assumed to give away their
products (scenario “0”), four times the expected profits may be
earned. Here the profits obtained by a failure to anticipate equilib-
rium pricing could be interpreted after-the-fact as a “windfall.”
However, if competitors’ are assumed to price according to mar-
ket data (scenario “p0”) or in equilibrium (scenario “p*(X0)”),

expected profits from design-and-pricing are likely to appear
accurate after pricing competition occurs.

Figure 7 addresses the final question: is anticipating pricing
competition important to finding the optimal designs? Unless
competitors’ products are ignored (scenario “1”), 1000 attempted
solves of the design-and-pricing problem result in an almost iden-
tical distribution of local profit maximizers to those obtained
using the design-then-pricing model. Considering profits alone
there appears to be little benefit to adopting the design-then-
pricing paradigm in this vehicle design example. This is a feature
clearly driven by aspects of the vehicle design and consumer deci-
sion models: the design solutions are primarily determined by the
equality constraints and bounds. In this case, anticipating competi-
tion has a significant influence on vehicle prices and expected
profits when the firm ignores competition in prices, but no influ-
ence on which designs are ultimately profit-optimal.

5 Discussion

This section discusses two important aspects of the article. We
first examine our assumption of Bertrand–Nash equilibrium as a
representation of price competition. Then, we discuss what our
comparison of design-and-pricing with design-then-pricing says
about the value of anticipating price competition during design.

5.1 On Bertrand–Nash Equilibrium in Design-then-
Pricing. Some researchers may take issue with the design-then-
pricing model applied here because it is based on classical
game-theoretic notions of “Nash” equilibrium. For example,
Wang et al. [40] raise three concerns about Nash equilibrium con-
cepts: Because design-then-pricing (as presented here) contains a
Nash equilibrium model of pricing, it would seem to lead to a
“design solution that is only guaranteed to be optimal when mar-
ket players take actions simultaneously” and “ignore[s] how the
equilibrium is [attained].” [40, p. 2]. These are certainly relevant
critiques of Nash equilibrium pricing and the associated design-
then-pricing paradigm as a high-fidelity model of real markets.
Depending on the time it takes to “reach” equilibrium in a price
competition game, and the length of time the game is subse-
quently played in or “near” equilibrium, this full trajectory of

Fig. 6 Mean perceived gain or loss in profits when choosing
designs and prices without anticipating pricing competition
that ultimately occurs, with regularized computations. Scenar-
ios are labeled as described in the text.

Fig. 7 Cumulative distribution function for computing profits
in the design-and-pricing model within a given percentage of
the apparent globally maximal profits over 1000 trials. The dark,
solid black curve represents overlapped CDFs of all design-
and-pricing scenarios except for “‘”; the CDF for this scenario
is represented by a dashed curve. The gray area is carried over
from Fig. 4.

Fig. 5 Success rates for the unregularized design-and-pricing
problem out of 1000 trials with random initial conditions. Sce-
narios are labeled as described in the text. As in Fig. 3, dashed
boxes represent SNOPT success rates (all 100%) and gray
boxes represent successful computations of a nonspurious
solution.
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prices could be relevant to optimal profits. Worse, there is little to
say that repeated games would converge to an equilibria at all.
Equilibria need not be (locally) “stable” in the sense of attractive
under best-response dynamics [13]. Dynamic pricing models
[92,93] might better capture the repeated nature of competition in
prices in markets where designs stay fixed for a long time, and a
more recent topic of research in operations research and manage-
ment science.

The perspective represented by Wang et al. [40] expresses a
very literal interpretation of equilibrium. Generally speaking, equi-
libria are sets of decisions that are fixed under certain behavioral
rules guiding those decisions. Bertrand–Nash equilibria in prices
represent a state of simultaneous optimality with respect to myopic
pricing decisions. Wang et al. formulate an agent-based model
with learning, simulating that model until convergence to an equi-
librium representing the consequences of design; the “no-regret”
equilibrium thus, obtained is also, when properly formulated, a
fixed-point under the behavioral rules chosen for the agent-based
simulation. Designing firms could indeed choose from a myriad of
equilibrium concepts to represent the outcome of competitive
interactions that determine the profitability of their design deci-
sions. The practical question firms face is which equilibrium con-
cept, if any, is both a reasonable representation of reality and
yields a tractable paradigm for analysis of real problems.

Bertrand–Nash equilibrium might be a “good” choice for
design-then-pricing models for two reasons.

First, equilibrium pricing as considered here is relatively
parsimonious in a space where it is difficult to forecast market
outcomes precisely. More complex models and simulations of
pricing competition could be very sensitive to assumptions on
behavioral rules and parameters governing them. Furthermore,
introducing more complex rules and parameters in a model does
not always yield better predictions or judgements [94], in part
because more complex models can easily capture more “noise”
than “signal” [95]. Moreover, as suggested by our comparison to
design-and-pricing, if design constraints determine optimal
designs then anticipating pricing competition may be irrelevant to
the profits ultimately obtained (though not necessarily to after-
the-fact perceptions of the worth or accuracy of the decisions thus
made).

Second, as we emphasize in this article, Bertrand–Nash equili-
bria in prices can be represented with systems of equations or
complementarity problems. The resulting model of competition,
when treated correctly, appears to be particularly tractable for use
in making strategic design decisions in large problems. There will
no doubt be a trade-off between the detail required to “accurately”
resolve pricing competition and the scale at which strategic deci-
sions whose profitability depends on pricing competition can be
considered. The ultimate value of decisions made with the design-
then-pricing model considered here certainly lies in the degree to
which Bertrand–Nash equilibrium prices reflect fundamental
aspects of pricing competition with fixed designs. By providing
techniques that make this design-then-pricing model tractable for
realistic examples we make an important technical contribution to
addressing this important open question.

5.2 Should Firms Anticipate Pricing Competition? Does
anticipating pricing competition influence the optimality of cho-
sen designs? The result in Sec. 4.4 speak to this question and pres-
ent a more subtle relationship between design-and-pricing and
design-then-pricing than has been discussed thus far in the litera-
ture. Within a firm, there may be connotations associated with
perceived after-the-fact gains or losses from design-and-pricing
strategy regardless of whether the decisions are, in fact, better or
worse than if price competition were anticipated when making
design decisions. For example, suppose an engineer proposed a
set of designs along with profit projections for those designs that
turned out to be low because of unanticipated competition. When
the “losses” appear, the engineer’s career might be damaged or

at risk. However, this engineer may not have been capable of
making a better decision by anticipating competition; all that was
ultimately “wrong” could be the profit forecast, and associated
pricing decisions. This possibility is suggested by our result that
anticipating equilibrium prices can appreciably change the profit
forecast and pricing, but not optimal designs. One of the three
case studies in Ref. [39] has the same result. On the other hand,
the engineer could make the same decisions assuming overly com-
petitive behavior (e.g., scenario “0”) and appear to have made a
miraculous decision when, again, they simply had made the wrong
profit forecast. These interpretations are certainly specific to the
model and problem explored here, but suggest an interesting rela-
tionship between the perceived value of specific decisions and the
objective value of the same decisions when made in a dynamic,
competitive environment. We believe this is worth exploring fur-
ther by market-systems researchers.

What, specifically, about our example implies that there is no
value to anticipating pricing competition? Existing results cer-
tainly suggest that there is a positive value to anticipating pricing
competition when it occurs. Shiau and Michalek [39], for exam-
ple, discuss three case studies: design of a painkiller (from
Ref. [31]), a weighing scale (from Refs. [96,97]), and an angle
grinder (from Ref. [42]). In the first and second case studies,
ignoring price competition when choosing designs leads to 1.5%
and 1.4% decreases in profitability, respectively. While small,
these decreases in profitability suggest that anticipating price com-
petition can be valuable. However, their third case is similar to
our results: failing to anticipate pricing competition for the angle
grinder results in overestimating profitability from optimal design
decisions by 21%, but entails no “real” loss in profits after pricing
competition occurs. Our hypothesis is that the presence of design
constraints can reduce the potential value of anticipating pricing
competition. In our case study, most local solutions are “fully con-
strained” in the sense that acceleration, fuel economy, and tech-
nology content for each vehicle are defined by a combination of
bounds and the equality constraint in Eq. (15). Thus, optimal
designs will be insensitive to changes in the market model that do
not enter these constraints, including both the form of demand
model and competitive interactions; prices and anticipated profit-
ability may differ. A formal proof can be based on the KKT con-
ditions. The angle grinder case examined by Shiau and Michalek,
by including only discrete decisions about which product features
to adopt, is similar: small changes in the market model are
unlikely to change which features to include, though they may
change optimal prices and/or the profits realized. Thus, the value
of anticipating competition in prices when making design deci-
sions depends on how deeply design constraints influence
optimality.

6 Conclusions

This article describes a theoretical and computational study of
models of optimal design-then-pricing; that is, design with price
competition modeled using Bertrand–Nash equilibrium prices.
We have drawn a distinction between an implicit programming
approach that treats prices as intermediate quantities computed in
equilibrium, and “MPEC” formulations that treat prices as varia-
bles constrained to satisfy a first-order condition for equilibrium.
Implicit programming can be effective, but may require prohibi-
tively accurate computations of equilibrium prices to reliably
compute optimal designs. An MPEC formulation that uses the lit-
eral first-order condition for equilibrium prices is shown to pos-
sess spurious KKT points that are not solutions to the problem
posed and can be computed by a state-of-the-art solver. Using a
reformulated representation of equilibrium prices in an MPEC
provably eliminates these spurious KKT points and leads to the
most efficient and reliable computations on a real-scale vehicle
portfolio design-then-pricing example. A comparison to design
problems that ignore future pricing competition shows that the
value of including pricing competition depends on (i) the
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importance of accuracy in profit forecasts, as opposed to realized
profits regardless of forecast, and (ii) the importance of constraints
in determining optimal designs.
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Nomenclature

cf ¼ vector of unit costs for firm f’s products
cF

f ¼ fixed costs for firm f
cj ¼ unit cost of product j

Dp
j ¼ differentiation with respect to price of product J
f ¼ index; firm f

F ¼ number of firms
gj ¼ equality constraints for product j
hj ¼ inequality constraints for product j
I ¼ number of “individuals” in simulated Mixed Logit

model
lj ¼ lower bound on design variables for product j
j ¼ index; product j
J ¼ number of products
Jf ¼ indices of products offered by firm f
p ¼ vector of all product prices
pf ¼ vector of prices for firm f’s products
Pf ¼ vector of choice probabilities for firm f’s products
pj ¼ price of product j
Pj ¼ Mixed Logit choice probability for product j
PL

j ¼ logit choice probability for product j
p* ¼ local equilibrium prices
P ¼ set of possible product prices; P ¼ ½0;1Þ
T ¼ set of possible individual characteristics
uj ¼ systematic component of utility for product j
uj ¼ upper bound on design variables for product j
Uj ¼ random utility for product j
U0 ¼ utility of an outside good
xj ¼ vector of design variables for product j
Xf ¼ “matrix” of design vectors for firm f’s products
Y ¼ “matrix” of all product attribute vectors
yj ¼ vector of attributes of product j
yj ¼ transform characteristics of product j into attributes
Y ¼ set of possible product attributes

ð ~rpp̂Þ ¼ combined gradient of firm profits
Ej ¼ random component of utility for product j
E0 ¼ random component of utility for outside good
h ¼ vector of individual’s characteristics
hi ¼ realization of h for the ith sample from l
# ¼ utility of the outside good
l ¼ probability distribution of h over T

p̂f ¼ firm f’s expected profits
p̂f ¼ firm f’s profits at a given set of designs and prices
p̂�f ¼ firm f’s profits at local equilibrium prices
u ¼ map in the reformulated MCP for equilibrium prices;

see Appendix A
Symbols used in our example

aj ¼ 0-60 time of product j (s)
a ¼ vector of acceleration performance for all products

b(j) ¼ product j’s body style
e ¼ vector of fuel efficiency for all products

ej ¼ fuel economy of product j (mpg)
fj ¼ footprint of product j
t ¼ vector of technology content for all products
tj ¼ technology content of product j

wj ¼ weight of product j
a ¼ price coefficient in the utility function
b ¼ body-style specific utility coefficients
n ¼ product-specific utility

Appendix A: Computing Equilibrium Prices

Suppose the choice probabilities are continuously differentiable
in prices; see Refs. [50,41] for conditions on the model to ensure
this holds. Then, at any local equilibrium prices, each firm’s
prices satisfy the stationarity condition ðDp

k p̂f ÞðY; c; pÞ ¼ 0 for all
k 2 J f , where Dp

k denotes differentiation with respect to the kth
product’s price. Combining the stationarity condition for each
firm we obtain the simultaneous stationarity condition (SSC), a
first-order necessary condition for local equilibrium prices:

THEOREM 1 (SSC [41]). Suppose P : ð0; i�ÞJ ! ½0; 1�J is continu-

ously differentiable. Let ð ~rpp̂ÞðY; c; pÞ denote the “combined

gradient” with components ðð ~rpp̂ÞðY; c; pÞÞj ¼ ðD
p
j p̂f ðjÞÞðY; c;pÞ

where f(j) denotes the (unique) index of the firm offering product

j. If p 2 ð0; i�ÞJ is a local equilibrium, then

ð ~rpp̂ÞðY; c;pÞ ¼ ð ~DpPÞðY; pÞ>ðp� cÞ þ PðY;pÞ ¼ 0: (B1)

where ð ~DpPÞðY;pÞ is the J� J “intrafirm” Jacobian matrix of
price derivatives of the choice probabilities defined, component-
wise, by ðð ~DpPÞðY; pÞÞj;k ¼ ðDkPjÞðpÞ if products j and k are
offered by the same firm and ðð ~DpPÞðY;pÞÞj;k ¼ 0 otherwise.

This follows from the standard necessary optimality conditions
for unconstrained optimization; see Ref. [41]. Prices p satisfying
Eq. (B1) are called simultaneously stationary, and the set of all
such prices is denoted SðY; cÞ. Note that SðY; cÞ � E‘ðY; cÞ
� EðY; cÞ. Morrow and Skerlos [41] provide an example that has
simultaneously stationary prices that are not a local equilibrium;
i.e., SðY; cÞ 6¼ E‘ðY; cÞ.

When i*¼1 (and there are no formal problems evaluating util-
ities for negative prices) Theorem 1 above gives a first-order con-
dition for equilibrium prices in terms of a nonlinear system. In
principle, this system can be solved with globally convergent
Newton methods (e.g., Refs. [98–100]) to compute candidates for
equilibrium. However, Morrow and Skerlos [41] demonstrate that
Newton methods applied to solve Eq. (B1) provide unreliable
computations of equilibrium prices. The reason is that the com-
bined gradient ð ~rpp̂ÞðY; c; �Þ is not coercive as a function of pri-
ces. A coercive function has a norm that increases without bound
as the norm of its argument increases without bound [101,
Chap. 6]. While coercivity is rarely discussed, it underlies most of
the current convergence theory for optimization problems [98],
nonlinear systems [98], and complementarity problems [102].
Specifically, without coercivity, there is no guarantee that
descent-type global convergence strategies will generate bounded
sequences and thus, may not contain convergent subsequences.
For the equilibrium pricing problem, application of globally con-
vergent methods may appear successful but may, in fact, compute
points at which some prices are essentially infinite even though
this is not profit-optimal.

Morrow and Skerlos resolve this problem by showing that two
fixed-point equations equivalent to Eq. (B1) are coercive and
thus, provide well-posed formulations for the application of
Newton-type methods. Here we extend and apply one of these
equations:

THEOREM 2. If p 2 ð0; i�ÞJ is a local equilibrium, then
uðY; c;pÞ ¼ 0 where

uðY; c;pÞ ¼ p� c� fðY; c; pÞ (B2)
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fðY; c;pÞ ¼ KðY;pÞ�1ðeCðY;pÞ>ðp� cÞ � PðY; pÞÞ (B3)

The J� J matrices K and eC are derived from the derivatives of
the Mixed Logit choice probabilities; specifically,

ð ~DpPÞðY;pÞ ¼ KðY; pÞ � eCðY; pÞ
See Refs. [41,50] for explicit definitions of these matrices. See
Refs. [41,50,51] for a proof of this result. When i*¼1 and there
are no problems evaluating utilities for negative prices, Newton
methods can be applied to solve uðY; c;pÞ ¼ 0.

Theorem 2 really only characterizes equilibrium prices that are
all less than the population’s limit on purchasing power, i*. When
purchasing power is finite (i*<1), it may be profit-optimal to
“price some products out of the market” by setting pj ¼ i�; for
examples, see Refs. [51,68]. In general, we might hope to solve
the KKT conditions for optimal pricing restricted to ½0; i��, which
can be written as in Eq. (8). Unfortunately, Eq. (8) is poorly posed
because ðDp

k p̂f ðkÞÞðpÞ ! 0 as pk " i� (Lemma 1). This is discussed
further in Ref. [51].

Equation (B2) remains useful when i*<1, at for the simulated
Mixed Logit models that would be applied in practice.

THEOREM 3 [51]. Suppose the Mixed Logit model is a simulator
with is ¼ iðhsÞ; iS ¼ maxsfisg ¼ i�. If p� 2 ½0; i��

J is a local equi-
librium, then p* solves Eq. (9). Conversely, suppose p* is a strictly
complementary solution to Eq. (9). If each firm’s profit Hessians
are negative definite with respect to changes in prices less than i*

only, then p* is a local equilibrium. Moreover, fðY; c; �Þ :
½0; i��J ! RJ can be extended to a continuously differentiable
function zðY; c; �Þ : RJ ! RJ such that p� c� zðY; c;pÞ ¼ 0 if,
and only if, proj{p} solves Eq. (9), where “proj” denotes the
Euclidean projection onto ½0; i��J .

These ideas extend rather readily to explicit bounds on prices;
that is, bounds on prices that are less than purchasing power (i*).
Shiau and Michalek [39] consider such a model, claiming such
bounds may be “imposed by manufacturer, retailer, consumer, or
government policies, and they may also be used to indicate model
domain bounds.” Anecdotally, we do know that such bounds are
included in some price optimization software currently used in
industry. We can write firm f’s pricing-stage profit maximization
problem with explicit price bounds as

max p̂f ðY; c;pÞ
w:r:t: ‘j 	 pj 	 �j for all j 2 J f

(B4)

for some ‘j; �j such that 0 	 ‘j < �j 	 i�. The combined KKT
conditions can be written as the MCP

‘ 	 p 	 �?� ð ~rp̂ÞðY; c;pÞ

Formally, this MCP no longer has the spurious solution problem
so long as �j < i�. However, when solving this equation numeri-
cally, difficulties may arise when the profit derivatives become
small as well as strictly zero, as seen in Fig. 2. This fact makes it
more difficult to know whether bounds chosen a priori will gener-
ate spurious solutions.

Because the sign of �ðDp
k p̂f ðkÞÞðY; c; pÞ is the sign of

ukðY; c; pÞ so long as pk < i� [41,50], and MCPs are invariant
over changes in the map on the right-hand side of the “?” symbol
that do not change the map’s sign, we can equivalently solve the
MCP

‘ 	 p 	 �?uðY; c;pÞ

We believe MCP is less likely to have numerical difficulties for
“large” prices, though either map could be employed.

Finally, we address second-order conditions. If no prices are
bound constrained, then the SOSC is simply to verify the negative
definiteness of Hessian of profits with respect to prices. Because

optimal pricing problems are simply bound constrained, any
active constraints are simply bounds. Active constraint gradients
are then sets of standard basis vectors (with either positive or neg-
ative sign) corresponding to those prices that are bound con-
strained. The subspace tangent to those constraint gradients is thus
spanned by the standard basis vectors that are not bound con-
strained. Verifying the SOSC–negative definiteness of the Hessian
matrix over the subspace tangent to the active constraint gra-
dients–thus reduces to verifying negative definiteness of the sub-
matrix of the Hessian with those rows and columns corresponding
to products with prices that are not bound constrained.

Appendix B: MCP Form of the KKT Conditions

This appendix proves the following result:
LEMMA 2. Consider a generic minimization problem in positive-

null form [52]

min f ðxÞ
w:r:t: l 	 x 	 u

s:t: cEðxÞ ¼ 0; cIðxÞ � 0

The KKT conditions for this problem can be written as the MCP

l 	 x 	 u?ðrf ÞðxÞ � ðDcEÞðxÞ>lE � ðDcIÞðxÞ>lI

1 < lE <1?cEðxÞ
0 	 lI?cIðxÞ � 0

The “?” symbol means the following: l 	 x 	 u?FðxÞ if
FiðxÞ > 0 implies xi ¼ li;FiðxÞ < 0 implies xi ¼ ui, and
FiðxÞ ¼ 0 implies xi 2 ½li; ui� for all i. Note that this definition

implies that 1 < lE <1?cEðxÞ is the nonlinear system

cEðxÞ ¼ 0. See Refs. [75,76,102–104] for definitions and exten-
sive discussion related to MCPs.

Proof. The KKT conditions for this problem are as follows

[52]: x 2 ½l;u�; cEðxÞ ¼ 0; cIðxÞ � 0, and there exist multipliers

lE 2 RME

; lI 2 RMI

;lI � 0, satisfying lI?cIðxÞ, and kL; kU

2 RN ; kL; kU � 0 satisfying kL?x� l and kU?u� x such that

rf ðxÞ � ðDcEÞðxÞ>lE � ðDcIÞðxÞ>lI � kL þ kU ¼ 0

See Nocedal and Wright [52], Chap. 12. Thus

rf ðxÞ � ðDcEÞðxÞ>lE � ðDcIÞðxÞ>lI ¼ kL � kU ¼ K (C1)

Feasibility with respect to the constraints and the lI, cIðxÞ comple-
mentarity is equivalent to

1 < lE <1? cEðxÞ
0 	 lI ? cIðxÞ � 0

Moreover, note that only one of kL
n ; k

U
n is nonzero at any xn feasi-

ble with respect to the bounds [ln, un], implying that

Kn

� 0 if xn ¼ ln
¼ 0 if xn 2 ðln; unÞ
	 0 if xn ¼ un

8<:
or, written in MCP form, l 	 x 	 u?K as desired. �

Appendix C: Derivatives of Profits

LEMMA 3. Assume the model is a simple Logit model; i.e., T is a
singleton. Then, as pk " i�; ðDp

k p̂gÞ ! 0 for any firm g and if
k 2 J f ; ðrx

kp̂f Þ ! 0.
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Proof. The first claim concerning price derivatives is proved by
the formulae in Refs. [50,68].

Note that

ðDx
k;np̂f ÞðX;pÞ ¼

X
j2J f

ðDx
k;nPL

j ÞðX; pÞðpj � cjðxjÞÞ

� PL
k ðX; pÞðDx

nckÞðxkÞ

where we consider the choice probabilities as a function of X,
instead of Y. This entails no loss of generality, and the chain rule
can be invoked to compute the literal derivative of choice proba-
bilities as defined as a function of Y. Moreover

ðDx
k;np̂f Þ ¼ ðDx

nvkÞPL
k pj � cj �

X
j2J f

PL
j ðpj � cjÞ

0@ 1A� PL
k ðDx

nckÞ

where we neglect the arguments for simplicity. Now both
PL

k ðX;pÞ and PL
k ðX;pÞ # 0 as pk " i� [68], and thus, ðDx

k;np̂f ÞðX; pÞ
to 0 as pk " i�. �

Proofs for second derivatives of profits are similar.
We now prove Corollary 1.
Proof. First note that as pj " i�,

Lx
j ðX;p;lj;l

p
f Þ ! �ðDx

j gjÞðxjÞ>lE
j � ðDx

j hjÞðxjÞ>lI
j

because ðrx
j p̂f ÞðX;pÞ ! 0 and ðDx

j
~rpp̂ÞðX;pÞ>lp

f ! 0 (Lemma 1).
Thus, the systems

lj 	 xj 	 uj? Lx
j ðX; p; lj; l

p
f Þ

1 < lE
j <1? gjðxjÞ

0 	 lI
j ? hjðxjÞ � 0

become

lj 	 xj 	 uj? � ðDx
j gjÞðxjÞ>lE

j � ðDx
j hjÞðxjÞ>lI

j

1 < lE
j <1? gjðxjÞ

0 	 lI
j ? hjðxjÞ � 0

which is solved by any feasible xj given lE
j ¼ lI

j ¼ 0. Similarly,
the rows of

0 ¼ �ðrpp̂f ÞðX; pÞ þ ðDp ~rpp̂ÞðX; pÞ>lp
f

0 ¼ ð ~rpp̂ÞðX;pÞ

can be written componentwise as

0 ¼ �ðDp
j p̂f ÞðX;pÞ þ

XJ

k¼1

ðDp
j Dp

k p̂f ðkÞÞðX; pÞðlp
f Þk

0 ¼ ðDp
j p̂f ðjÞÞðX;pÞ

However, ðDp
j p̂f Þ; ðDp

j Dp
k p̂f ðkÞÞ, and ðDp

j p̂f ðjÞÞ each vanishes as

pj " i� and thus, these systems are trivially solved by pj ¼ i�.
Thus, given pj ¼ i� for all j 2 J f , the KKT conditions reduce

to

lj 	 xj 	 uj? Lx
j ðX;p;lj;l

p
f Þ

1 < lE
j <1? gjðxjÞ

0 	 lI
j ? hjðxjÞ � 0

9>>=>>; for all j 2 J �f

and the rows of

0 ¼ �ðrpp̂f ÞðX; pÞ þ ðDp ~rpp̂ÞðX; pÞ>lp
f

0 ¼ ð ~rpp̂ÞðX;pÞ

corresponding to indices j 2 J �f . �

Appendix D: Complete Results Table

Table 1 lists more details concerning the results in Sec. 4.
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