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Abstract 

We separate and directly measure the labor-demand effects of two simultaneous forms of technological 

change—automation and parts consolidation. We collect detailed shop-floor data from four 

semiconductor firms with different levels of automation and parts consolidation. For each process step, 

we collect task data and measure operator skill requirements, including operations and control, near 

vision, and dexterity requirements using the O*NET survey instrument. We then use an engineering 

process model to separate the effects of the distinct technological changes on these process tasks and 

operator skill requirements. Within an occupation we show that aggregate measures of technological 

change can mask the opposing skill biases of multiple simultaneous technological changes. In our 

empirical context, automation polarizes skill demand as routine, codifiable tasks requiring low and 

medium skills are executed by machines instead of humans, while the remaining and newly created 

human tasks tend to require low and high skills. Parts consolidation converges skill demand as formerly 

divisible low and high skill tasks are transformed into a single indivisible task with medium skill 

requirements and higher cost of failure. We propose a new theory for the differential labor effects of 

technological changes on tasks, and hence jobs.   Understanding these differential effects of 

technologies on labor outcomes  is a critical first step toward analyzing the impact of emerging 

technological changes on labor demand, and eventually markets.  

1. Introduction 

A sizable literature has emerged around the influence of technological change on employment, 

wages, and skill demand of labor (Card and DiNardo 2002, Autor et al. 2003, Bartel et al. 2007, Vivarelli 

2014, Ales, Kurnaz, Sleet 2015, Acemoglu and Restrepo 2017). A core concern of this literature has been 

the relationship between technological change and increases and decreases in demand for particular 

skills. For example, studies have highlighted skill-biased technological change (SBTC) that 

heterogeneously affects relative productivity of different types of labor and, hence, increases demand 

for certain (typically higher-skilled) labor while decreasing demand for other (typically middle- or lower-
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skilled) forms (Autor, Katz and Kearny 2008, Acemoglu and Autor 2011, Autor and Dorn 2013). These 

studies suggest that computational and automation technology is a key driver of increases in demand 

for high skills relative to “middle skills”, causing wage inequality between skill groups.  

While scholars have recognized that multiple forms of technological change can occur 

concurrently (Goldin and Katz 1998), the SBTC literature has not sought to separately measure 

simultaneous technological changes. Traditional methods have difficulty separately measuring the 

effects of simultaneous technological changes given available data, as aggregate observations capture 

the joint effect of all simultaneous changes. Furthermore, because of data availability, the literature has 

not directly measured the effect of technological change (past, current, or emerging) on labor demand, 

instead relying on indirect measures of technological change (e.g. capital) and then relating these to 

labor outcomes. Such approaches may conflate the effects of different technologies with opposing labor 

implications.  

Directly measuring the effects of different simultaneous technological changes on the demand 

for labor skill is relevant for labor economics, management, and policy. Technologies that affect demand 

for different types of skills may necessitate different training or other responses by firms and 

policymakers. There is historical evidence in the engineering literature of widespread simultaneous 

technological changes across a range of industries (Abernathy and Utterback 1978). Examples include 

process changes in the 19th to mid-20th centuries driven by simultaneous innovations in machine 

tooling, materials and electrification (Rosenberg 1963, David 1985, Hounshell 1984). More modern cases 

range from the simultaneous adoption of broadband technology and automation across industries 

(Gramlich 1994, Koutroumpis 2009), to simultaneous parts consolidation (Lecuyer 1999) and automation 

(Pillai et al. 1999) in semiconductors, to simultaneous automation (Jamshidi et al. 2010) and adoption of 

additive manufacturing (Mueller 2012) in aerospace. These distinct technological changes may not only 

produce competing designs from a consumer perspective, but also variations in the factor (e.g. labor) 

content of production (Anderson and Tushman 1990). Moreover, simultaneous technological changes 

can be complementary or occur independently from each other, and different combinations of 

technologies can be implemented by different firms or regions (e.g. Chung and Alcacer 2002, Fuchs and 

Kirchain 2010, Fuchs et al. 2011, Fuchs, Kirchain, and Liu 2011).  

To separate and measure the labor demand implications of simultaneous technological changes, 

we use engineering process modeling. Our engineering models enable us to determine the quantity and 

skills of laborers needed to produce a given amount of output, conditional on a particular set of 
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production technologies and operating parameters. We focus on operator jobs, which in our context 

require in the U.S. a high school education, and overseas sometimes require less. This shop-floor 

operator focus helps us characterize how technological change affects skill demand within a population 

with low workforce participation (BLS 2018) and historic vulnerability to technological displacement in 

aggregate (Autor and Dorn 2013, Acemoglu and Restrepo 2017). 

Our engineering process model is a process-based cost model (PBCM), which unpacks the firms’ 

production function into individual steps, and uses existing data and technical knowledge to simulate 

each step (with data for some steps disaggregated still further into the detailed tasks within a step). 

PBCMs have been used for over 10 years in engineering and management to understand the effects of 

technological decisions on factor demands and costs prior to large-scale investments (Field, Roth, 

Kirchain 2007, Fuchs et al. 2008). These models have informed engineering and production decisions in 

multiple industries (Field, Roth, Kirchain 2007, Huang et al. 2018, Laureijs et al. 2018). We extend these 

modeling techniques to include a detailed portrayal of labor skill requirements per process step. For our 

purposes, PBCM has the following advantages: (1) it allows us to recover economic production functions 

without relying on simplifications and structural assumptions for mathematical convenience that may 

not be well supported by the nature of a technology or production process (Chenery 1949, Lave 1966, 

Pearl and Enos 1975), (2) it makes use of production step-level inputs rather than aggregate data, 

allowing us to map technical characteristics (such as the level of automation) directly to the production 

tasks and associated labor consequences, and (3) it allows us to disentangle the labor demand 

implications of simultaneous technical changes by constructing counterfactuals of independently 

applied combinations of technologies to the production process that are technically feasible but are not 

observed in historical firm operations, including emerging technologies that do not exist yet in large-

scale production.   

We focus on disentangling two examples of technological change: automation, and parts 

consolidation. Automation is a process innovation that reflects the reallocation of tasks from human 

operators to technical systems (Frohm et al. 2008). Parts consolidation is a product innovation involving 

the redesign of a product that allows multiple formerly discrete parts to be fabricated as a single 

component (Schwedes 2001). Note that while parts consolidation is a product innovation, it also 

requires reorganization of the production process and associated tasks. These two technological 

changes occur simultaneously with each other in industrial and technological contexts as diverse as 

semiconductors (Lecuyer 1999, Pillai et al. 1999), aerospace (Jamshidi et al. 2009, Lyons 2014) and 
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automobiles (Fuchs et al. 2008, Shimokawa et al. 2012). We focus on a subset of the semiconductor 

industry, specifically, optoelectronics. In optoelectronics, there exists a broad range of functionally 

homogenous but competing designs with different levels of parts consolidation, as well as different 

levels of automation in their production.  

Building on previous process-based cost modeling (Fuchs et al. 2011), we collect data from four 

firms representative of leading capabilities and 42-44% of production volume across the industry for five 

different designs, which represent the range of automation and parts consolidation across the industry. 

Our data includes detailed operational inputs (e.g. machine prices, cycle times, yields, downtimes, 

material usage, operator time, etc.) for 481 process steps, totaling over 9000 inputs; upper and lower 

bounds for these operational inputs; employee education and experience requirements; and three 

measures of employee skill requirements (using the Department of Labor sponsored O*NET Content 

Model (2017)) for direct line operators. 

Using direct measures of the effect of technological change on labor demand, we find that 

aggregate measures of technological change can mask the opposing skill biases of multiple simultaneous 

changes. Our paper makes five main contributions: (1) We directly measure the influence of 

technological changes on demand for labor characteristics of manufacturing shop-floor operators in 

terms of detailed heterogeneous skill requirements. (2) We disentangle the effects of two different 

types of simultaneous technological change—process automation and parts consolidation. (3) Where 

most of the SBTC literature has focused on demand shifts between occupations, we capture the effects 

of technological change within an occupation. (4) Through these methodological contributions, we find 

evidence of heterogeneous effects of differing technologies on the demand for labor skill. Empirically, 

we find that automation polarizes while parts consolidation can converge skill requirements for 

operators. These results suggest that understanding the differential effects of technologies on labor 

outcomes may be key to analyzing the impact of emerging technological changes on labor demand, and 

eventually markets. (5) Drawing from our empirical findings, we propose a new theory for the 

differential labor effects of technological changes in which automation leads to task substitution, parts 

consolidation to task elimination and transformation, and both sometimes require task creation.  

2. Literature Review 

A significant literature has emerged on the influence of technological change on wage and 

employment inequality, especially in manufacturing, with skill-biased technological change (SBTC) a 

proposed driver (Card and DiNardo 2002). SBTC occurs when a technology has a heterogeneous effect 
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on the marginal product of different types of labor (Card and DiNardo 2002, Bartel et al. 2004) or when 

technology enables substitution between certain types of labor and other factors of production 

(Brynjolfsson and Hitt 1995, Dewan and Min 1997, Bresnahan et al. 2002). Skill-biased technological 

change has been associated with high returns to skill, particularly in the case of the automation of 

routine tasks (Autor et al. 2003, Autor and Dorn 2013), and with information technology adoption both 

across the economy (Bresnahan et al. 2002, Michaels et al. 2014, Atasoy et al. 2016) and on the factory 

floor (Bartel et al. 2007). Organizational change and management innovations can also lead to 

heterogeneous worker productivity effects (Caroli and van Reenen 2001, Ichniowski and Shaw 2009). 

Detailed characteristics of a technology have relevance for its productivity and hence labor implications 

(Bartel et al. 2004), such as the types of tasks susceptible to automation (Autor, Levy and Murnane 

2003). Despite the importance of individual technological characteristics and evidence of technological 

heterogeneity within the literature, past work in SBTC has not sought to separate the potentially 

different labor effects of simultaneous technological changes. The existing literature linking 

technological change and labor outcomes is also primarily focused on the effects of historical 

technological change on labor market outcomes, and thus may also face challenges anticipating the 

consequences of emerging technologies for labor demand. 

In order to characterize labor effects of SBTC, the literature draws heavily (but not solely) on 

education as a measure of skill (Autor, Levy and Murnane 2003, Acemoglu and Autor 2011, Carneiro and 

Lee 2011, Autor and Dorn 2013). Different technological changes may have important, heterogeneous 

effects on skill requirements within the same educational category (e.g. manufacturing jobs with all the 

same low educational requirements). Other skill measures include past wages (Autor, Levy and Murnane 

2003, Autor and Dorn 2013), with the potential to mask important worker reallocations and other labor 

force shifts (Lane 2005). A few studies have collected detailed technical and operation skill and training 

information on machine operators (Bartel et al. 2004, Bartel et al. 2007): this past work describes the 

effects of technological change on manufacturing operator skills, but measures these effects indirectly, 

through firm-level surveys of whether specific skills become more or less important to operators in 

aggregate. These studies suggest a direction of the effect of technological change but, lacking measures 

for differences in the level of skill required and the share of operators affected, not its magnitude, as 

well as possibly overlooking multimodal effects of technological change within the same skill (i.e. rather 

than a bidirectional skewing of skill requirements). In addition to education and wage as intermediaries 

for skill, a literature has also emerged suggesting that technological change may substitute for labor in 
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certain types of tasks, potentially replacing “routine” labor while increasing demand for cognitive work 

(Autor 2013). This task approach to measuring technological change is relevant within jobs of the same 

educational or wage band and may reflect labor substitution effects not measured by education or 

wage.  

When characterizing labor demand, the literature uses production functions that are often 

subject to restrictive assumptions (e.g. time-constant factor share and degree of factor substitution) 

that are potentially implausible during periods of fundamental technological change (Chenery 1949, 

Lave 1966, Pearl and Enos 1975, Wibe 1984, Smith 1986). Whereas classical production functions are 

limited to historic factor substitutions captured by statistical data (Pearl and Enos 1975), engineering 

process-based models and data make it possible to explicitly map current and future technological 

change—including expected future design decisions—to production processes and operations at scale, 

including the heterogeneity of equipment, labor and material inputs (Pearl and Enos 1975, Fuchs and 

Kirchain 2010). Previous work (Fuchs and Kirchain 2010, Fuchs et al. 2011, Fuchs 2014) use engineering 

models to show how shifting from a developed to a developing country changes which advanced 

products it is profitable for firms to pursue, thus questioning traditional assumptions in gains from 

trade. Whitefoot et al. (2017) use engineering models combined with oligopolistic equilibrium models to 

estimate the influence of energy efficiency regulations on technology adoption and tradeoffs with other 

product characteristics without conflating unobserved characteristics that are difficult to address 

econometrically (Whitefoot et al. 2017). To-date, however, these methods have not been used to study 

the implications of technological change on labor outcomes or disentangle the different implications of 

different forms of technological change. 

3. Methods: Engineering Process-Based Cost Modeling 

Engineering process-based cost models (PBCMs) simulate the consequences of technological 

changes at each step based on firm production plans, information from similar processes at different 

scale or in different contexts, basic scientific principles, and observations of production activities before 

and after a technological change (Fuchs, Ram, Bruce and Kirchain 2006). We use a PBCM to characterize 

the production functions of several functionally homogenous goods and generate technically feasible 

designs that capture current and future parts consolidation separately from other changes to the 

production process (particularly automation) and inputs, such as factor prices (Field, Kirchain and Roth, 

2007).  
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PBCMs unpack the aggregate production function into individual manufacturing steps. 

Specifically, PBCMs map design (e.g. geometry, material, process) decisions to process inputs per step 

(e.g. cycle time, labor usage, equipment type, yields) to operations at scale and, given input prices, to 

cost (see Appendix 1: Equations for a functional characterization of the PBCM). While they have not 

been used to do so in the past, these models can easily and flexibly characterize labor inputs at very fine 

levels of required skills, training, and competencies (e.g., workers with fine motor skills or those with 

training in chemical vapor deposition). One output of the PBCM is operator labor required per 

production step at a given production volume (see Appendix 1). We also collect skill ratings reflecting 

the minimum capabilities for an employee to perform the tasks associated with each production step. 

We measure these skills along the O*NET rating scale of difficulty for each of three skill dimensions: 

finger dexterity, near vision, and equipment operations and control (O*NET Online), described further in 

Section 5.2.  

For each technology, design, and process configuration, we use our PBCM to estimate the 

quantity of labor demanded (i.e. required inputs for operations at scale) at differing levels of rated skill 

difficulty. With this information, we are able to estimate the change in skill demand as measured by the 

level of skill requirements for each production process step. We use the sum of labor required across 

production steps with a given skill level (1-5) and type (i.e, dexterity, vision, operations and control) to 

estimate the total quantity of labor required at that skill level (e.g. the number of operators at dexterity 

level 1).  This information is used to generate quantitative (i.e. production process level) estimates of 

the direction(s) and magnitude of technological change effects on labor skill demand. However, our 

PBCM does not incorporate the market equilibrium interactions among firms and workers. Thus, we are 

able to directly capture the effect of technological change on shifts in labor demand but not on 

equilibrium production volumes and labor quantity. 

4. Technology and Industrial Context 

4.1 Disentangling Simultaneous Technological change: Parts Consolidation and Automation 

Parts consolidation occurs when multiple formerly discrete parts are designed and fabricated as 

one component (Schwedes 2001, Johnson and Kirchain 2009). As such, parts consolidation is a product 

innovation with many process implications. Parts consolidation is generally enabled by fundamental 

technological advances in design (e.g. topology optimization), materials (c.f. composites or strained 

silicon), and processes (e.g. additive manufacturing or e-beam lithography). Ongoing efforts for parts 
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consolidation are common across a wide range of industries, including automobiles, (Fuchs et al. 2008, 

Johnson and Kirchain 2009), aerospace (Lyons 2014), and both electronic (Lecuyer 1999), and photonic 

(Fuchs and Kirchain 2010, National Academy of Sciences 2013, Yang et al. 2015) semiconductors. Table 1 

provides examples of parts consolidation across several industries.  

Table 1 Examples of Parts Consolidation by Industry and Number of Parts Consolidated 

Industry Example Parts Consolidated 

Aerospace 
(Thompson et al 2016) 

Additive manufacturing: fuel 
nozzles and engines 

18 parts to 1 (nozzle) 
855 parts to 12 (engine) 

Automotive  
(Fuchs et al 2008) 

Steel to polymers:      auto 
bodies 

250 to 62 

Electronics 
(Moore 1995) 

Monolithic integration: 
transistors 

120 parts to 1 

Optoelectronics 
(NAS 2013) 

Monolithic integration: lasers 
  

20 parts to 3 

The engineering literature on parts consolidation, and parts count reduction more broadly, 

suggests process-level consequences including reduced assembly and more complex component 

fabrication. (Fuchs et al. 2008, Johnson and Kirchain 2009, Yang et al. 2015, Liu 2016). These 

consequences may generate skill-biased changes in labor demand by altering the skill content of 

remaining (or newly created) production tasks. They may also shift the ratio of tasks with already 

heterogeneous skill content, driving relative increases or decreases in labor demand for some types of 

skills.  

Automation consists of the transition of tasks, historically in manufacturing, from human 

workers to machines (Frohm et al. 2008). Automation is a largely process-based (rather than product 

design, as in parts consolidation) strand of technological change, including structuring production 

systems to enable automated or remote management of machine activities (Carpanzano and Jovane 

2007). Automation is often described within the literature as skill-biased, principally eliminating manual 

or routine jobs and increasing demand for higher-skilled labor (Autor and Dorn 2013): the shift in task 

ratios driven by parts consolidation, however, may affect different jobs and thus demand for different 

types of labor.  

4.2 Empirical Setting: The Optoelectronic Semiconductor Industry 

Optoelectronic devices combine electronics and photonics (light) to send and receive 

information in a variety of applications, including throughout the communications and computing 
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industries (Lebby and Hartman 1995). The global optoelectronics industry is anticipated to reach $55 

billion in revenue by 2020 (MarketsandMarkets 2017), and over time, due to its increased bandwidth 

and reduced energy use, optics is increasingly expected to replace traditional electronics (NAS 2013). 

The optoelectronics industry is a particularly interesting case for studying simultaneous technological 

changes, and simultaneous parts consolidation and automation in particular: the optoelectronic device1 

we study features competing designs with different levels of parts consolidation, as well as different 

levels of production process automation. At all levels of parts consolidation for our case technology, the 

products are perfect substitutes in today’s marketplace; although the most consolidated designs may 

have performance advantages (specifically, smaller size) in other markets in the long term (Fuchs and 

Kirchain 2010, NAS 2013), the designs in today’s market have the same performance requirements, 

including a standard sized packaging that fits into devices for use.  

Past work and our own interviews with firms suggest that competition in the specific 

optoelectronic devices we study is driven primarily by price (Fuchs and Kirchain 2010, Personal 

Interviews with Industry Leaders).2 Prior research (Fuchs et al. 2011) also suggests that a low-cost leader 

does not exist among products with different levels of parts consolidation, allowing heterogeneous 

designs to persist in the industry. However, location (hence, labor costs and capabilities)3 (Fuchs and 

Kirchain 2010) or technical capabilities could drive a firm-specific cost advantage for certain levels of 

parts consolidation, allowing the variation in parts consolidation important to our study. 

Automation levels also vary across the industry: Some firms in our sample require operators to 

perform extensive visual inspections throughout the production process, while others rely more on 

automated testing equipment. Some component attachment and other subassembly is performed 

physically in one participant firm, while automated in others. These differences may be driven by 

location-specific labor costs and capabilities, which affect the viability and costs of automation and shift 

the optimal process configuration (Fuchs and Kirchain 2010). Hence, for example, a firm located in 

Southeast Asia with a low level of automation could compete with a highly automated firm in North 

America.  

                                                           
1 The specific device is not identified to protect the confidentiality of participating firms. 
2Industry interviews also suggest some competition around serving client-firm needs, but customization is typically 
around form factor and hence independent of internal component parts consolidation. 
3The optoelectronics industry has historically witnessed offshoring from the United States toward East Asia, driven 
by cost. Our study includes facilities in the U.S., Developed and Developing East Asia and Western Europe. 
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As in electronic semiconductors (Klepper 2010), in optoelectronic semiconductors, parts 

consolidation occurs through “integration.” The industry contains low parts consolidation designs with 

individual discrete components mounted onto a semiconductor wafer and wire-bonded to each other; 

medium parts consolidation (called “hybrid” integration by the industry) with some formerly discrete 

parts fabricated together as single components and then assembled together through bonding; and 

finally, high parts consolidation (called monolithic integration), which involves “growing” multiple 

components on or within a wafer using semiconductor fabrication and etching techniques rather than 

attaching them using assembly techniques (NAS 2013, Yang et al. 2016).  

Production of an optoelectronic device can take over 150 process steps and require more than 

65 different machines. These process steps can be broken into four main categories: fabrication, 

subassembly, and final assembly (see Figure 1), with testing throughout the other three categories. 

Fabrication requires semiconductor processes such as deposition, lithography, and etching; for example, 

operators may load wafers into lithography machines or monitor gas pressure during material 

deposition. Sub-assembly of these fabricated components into the desired device occurs through a 

series of steps; for example, operators may manually attach components to a substrate, calibrate and 

monitor automated component bonding processes or load batches onto a curing belt. In final assembly, 

the device is packaged into a standardized “form factor” that allows it to interface with the rest of the 

communications or computing system. In this step, operators may attach optical fibers or screw 

together packaging cases. The fourth category of process steps, testing, occurs throughout each of these 

stages of the production process; operators may visually inspect components or the finished product 

through microscopes or prepare and monitor large scale automated testing processes such as thermal 

stress testing.  

Parts consolidation increases the share of production activity in fabrication and reduces the 

number of subassembly steps, as there are fewer components to assemble. While testing remains 

important (perhaps more so with potentially greater costs of component failure from merged process 

steps), the number of opportunities for testing steps in the process flow can also decrease. Final 

assembly steps are less affected, as the final packaging currently remains largely the same across 

designs. Automation of production tasks does not change the order of process steps, though it can 

change the nature of operator tasks (e.g. a manual component attach task becomes equipment loading 

and monitoring).  
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Figure 1 Process Flow Categories 

5. Data Collection 

5.1 Firm Sample 

Our sample comprises four firms in total. These firms are leaders by volume in the production of 

the device we study, with operations across North America, Europe, Japan, China and Southeast Asia 

and include two of the broader industry’s largest companies by revenue as well as by volume.4  We 

capture positions across the industry technical domain by studying firms on the technical frontier of the 

industry in terms of the level and timing of parts consolidation and automation, as well as firms with 

relatively low levels of automation and/or parts consolidation. We also capture the industry’s range of 

organizational models: both globally distributed firms and those with primarily U.S.-based production, as 

well as both vertically integrated (fabrication and assembly) and fabless firms. The firm product designs 

included in our study account for between 42% and 44% of the total annual output on the global market 

(see Table 2). This domain includes the production of two designs that match our low consolidation 

scenario and three that match our medium consolidation. There are no designs currently on the market 

that match our high consolidation scenario; however such designs are technically feasible and produced 

                                                           
4All participant firms requested deidentification before agreeing to involvement in this study. 
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in small-scale research contexts. Our sample also includes different levels of automation and equipment 

scale for many production steps, including industry state-of-the-art in automation of production steps as 

well as manual or small-batch configurations. 

Table 2 Normalized Annual Production Volume (APV) and Share of Industry Production by Product Design 

Product Designs Industry Share (High Estimate) Industry Share (Low Estimate) 

Design 1 9% 9% 

Design 2 16% 15% 

Design 3 8% 7% 

Design 4 4% 4% 

Design 5 8% 7% 

Total 44% 42% 

Low share estimates are based on upper bound estimates of industry production and lower 

bound estimates of firm production volume. High share estimates are based on lower bound estimates 

of industry production and upper bound estimates of firm production volume. 

5.2 Model Inputs 

PBCMs considered in the literature (e.g., Johnson and Kirchain 2009, Fuchs et al. 2011) require 

collecting data on more than 20 inputs for each step of the production process. We contacted 12 firms 

and collected extensive process data from four firms on five different processes. For each of 481 

production steps, we collect standard operational inputs to a process-based cost model, such as yield 

rate5, cycle time6, and wages7 (see Appendix 2.2). We collect mean values as well as weekly maximum 

and minimum values for these inputs.  Further, we collect data on the required experience, education, 

training time, and skill levels of physical and cognitive skills to complete the tasks associated with each 

production step (see Table 3).  

The Department of Labor’s “Occupational Information Network” (O*NET) Database offers one 

data source for capturing skill in detail. The database offers hundreds of occupational definitions and a 

variety of survey-based occupation-specific ratings of the difficulty and importance of skills and abilities 

required. O*NET’s common survey instrument facilitates the development of a taxonomic approach to 

both tasks and occupations (Peterson et al. 2001, NAS 2010) by allowing us to measure their skill 

                                                           
5 Defined in our model as the number of pieces passing through a production step for processing at the next step. 
6 Defined in our model as the time to process a full batch (including any rejected parts) through a production step. 
Batch size is a per-step characteristic, often dependent on equipment type. 
7 Wages do not include the cost of employee benefits (e.g. health insurance). An estimated increase of 20% in the 
cost of labor to approximate these costs did not significantly alter results. 



Combemale, Whitefoot, Ales Fuchs: Not all technology change is equal     13 

Please contact authors for updates before citing 

 
content in detail. It also provides a framework for collecting industry-specific data where O*NET data 

may be missing or out of date (Eposto 2008). Several personnel studies draw on O*NET, for instance to 

study employment matching (Jeanneret and Strong 2003, Converse et al. 2004) and to forecast key 

competencies for the future of work (Burrus et al. 2013). Past studies in SBTC have used O*NET’s 

predecessor, the Dictionary of Occupational Titles (DOT) to measure changing job task and occupational 

requirements (Autor, Levy and Murnane 2003, Lewis and Mahony 2006) and employment polarization 

(Goos et al. 2009), but these studies use skill ratings for highly aggregated job descriptions (e.g. a 

machine operator) without capturing detailed skill heterogeneity at the level of specific production tasks 

(e.g. running an automated wire bond machine). These measures cannot capture technological changes 

that affected the tasks performed by workers within the same aggregate job description, which our 

production task level approach allows.  

We measure skill requirement levels using the O*NET survey instrument, which rates them 

using a 1-7 scale; the scale includes example anchors provided at each even-valued number, shown to 

result in reliable and consistent ratings.8 For example, a dexterity level of 2 indicates the task requires a 

similar difficulty of dexterity as placing coins in a parking meter, while a dexterity level of 6 indicates a 

similar level of difficulty as assembling the inner workings of a wristwatch. We chose to collect data on 

operations and control, near vision, and dexterity based on our initial observations and interviews9 

(O*NET). Although we employ a 1-7 scale based on the O*NET survey, no tasks in our study exceeded a 

difficulty rating of 5. This is unsurprising, as ratings of 6 or 7 reflect very high skill requirements (e.g. air 

traffic control). 

 

                                                           
8 The O*NET taxonomy was devised based on taxonomic methods common in the literature (Meehl and Golden 
1982, Carrol 1993) and reflects a continuation of interest and capability typologies used in past skill tests (Dvorak 
1947) and occupational databases (e.g. Dictionary of Occupational Titles). The O*NET content model and survey 
instrument draws on an extensive literature for measuring and categorizing skills (Peterson et al. 1999) and 
abilities (Dvorak 1947, Meehl and Golden 1982, Carrol 1993, Geisinger et al. 2007); taxonomies of ability have 
been used in labor and psychology contexts to characterize individuals (Fleishman and Reilly 1992), and a literature 
has emerged specifically around developing taxonomies of ability, skill and tasks for O*NET and similar databases 
(Borman et al. 1999). Hence, the categorization of skill and ability and the calibration of skill or ability descriptions 
(e.g. level of precision) are well supported by examples and methods from past literature. 
9 Within the O*NET survey instrument, finger dexterity and near vision are physical abilities, while operations and 
control is a cognitive skill: “an ability is an enduring talent that can help a person do a job” and a “skill is the ability 
to perform a task well.” With reference to minimum capabilities and in connection to the task literature, however, 
we refer to all three dimensions as “skill requirements.” 
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Table 3 New Labor-Related PBCM Inputs Collected 

Input Name Range/Typical Values 

Training and Experience 

Years of Education, Experience Education: Operator 8-12 years, Technician 14 
years, Engineer 16-18 years 
Experience: 0 – 2 years 

Training Time 3 to 30 days Training 

Annual Turnover Rate 10% to 33% 

Skill Requirements 

Operations and Control 
Controlling operations of equipment or systems 
 

2 = Adjust copy machine settings 
4 = Adjust speed of assembly line based on 
product 
6 = Control aircraft approach and landing at large 
airport 

Near Vision 
The ability to see details at close range (within a 
few feet of the observer) 

2 = Read dials on car dashboard 
5 = Read fine print 
6 = Detect minor defects in a diamond 

Dexterity 
The ability to make precisely coordinated 
movements of the fingers of one or both hands to 
grasp, manipulate, or assemble very small objects 

2 = Put coins in a parking meter 
4 = Attach small knobs to stereo equipment on 
assembly line 
6 = Put together the inner workings of a small 
wristwatch 

In addition to our process inputs and skill data for each of our 481 process steps, we have even 

more detailed worker task descriptions for 78 of our assembly process steps.10 For these process steps, 

we collect the level of automation for every task that makes up the step (e.g., within the same process 

step, an adhesive application task may be automated but a part inspection task may be manual).  

5.3 Model Scope and Boundaries 

We scope our analysis to focus on the production line in each firm associated with the case 

optoelectronic device, and the immediate inputs associated therewith. Empirically, the process flows for 

the devices are from firm settings that dedicate one single line to produce the device. There is wide 

variation in the range of other products produced by the firms, and thus, significant variation in indirect 

inputs and overhead across firms derived from other products than the device of interest. Therefore, for 

this study, we do no collect overhead and indirect labor costs, but focus instead only on direct inputs for 

the production line of the device. We also do not collect data on energy usage, as prior data suggests 

that energy costs are negligible (Fuchs et al. 2011). 

                                                           
10These detailed task descriptions are drawn from the assembly processes of low as well as medium consolidation 
designs with process steps corresponding to both low and high automation in our scenario design.  
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Another notable assumption of our model is that it does not include scale diseconomies. None 

of the firms in our study (including industry leaders by production volume) operate at a scale requiring 

duplicate facilities dedicated to the same production tasks, and in observing the production line there 

were no obvious cases of diseconomies, such as traffic and queuing for common equipment or long 

transit times within large facilities: across our empirical production scales, we did not observe significant 

differences in line organization and equipment dedication choices to suggest adjustment for scale 

diseconomies.  

6. Research Design 

6.1 Generating Counterfactuals 

Using the engineering process model, we are able to separately examine the effects of 

simultaneous technological changes (here, parts consolidation and automation) by generating 

counterfactual scenarios that represent variations in the level of implementation of a single 

technological change ceteris paribus. To control for parts consolidation across our counterfactuals, we 

use consistent process flows (i.e. the same steps in the same order) but allow the level of automation of 

the steps to vary; conversely, to control for automation, we generate counterfactuals with different 

process flows (i.e. to produce different designs) but with consistent levels of automation for all steps. 

Combinations of parts consolidation and automation levels within the data allow us to generate four 

counterfactual scenarios (A, B1, B2, C). These counterfactuals reflect three levels of parts consolidation 

(A is low parts consolidation, B1 and B2 are medium parts consolidation, and C is high parts 

consolidation) and two levels of automation (A and B1 at a lower level of automation than B2 and C). 

The separation of automation and parts consolidation in our research design is illustrated in Figure 2. 

 Lowest 
Consolidation 

Medium 
Consolidation 

High 
Consolidation 

Low Automation Scenario A Scenario B1  

High Automation  Scenario B2 Scenario C 

Figure 2 Research Design: Parts Consolidation without Automation and Automation without Parts 
Consolidation 

Figure 3 shows diagrams of the three levels of parts consolidation represented in our scenarios 

and indicates for each level of parts consolidation which components are consolidated; components 

consolidated with each other are fabricated as a single component with no assembly required. Scenarios 
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B1 and B2 consolidate the same components, but they differ in the level of automation of their specific 

process steps. 

 

Figure 3 Optoelectronic Products and Components by Level of Parts Consolidation 

Our high-parts consolidation case is not yet in commercial production. Data collection for the 

production of this design is based on detailed engineering design, process flow, and production plans for 

future large-scale production in the industry. For the assembly of the high-consolidated case, we use the 

process flow from Fuchs et al. (2011) to define each production step. We then populate this process 

flow with updated per-step inputs collected as part of our study. For the fabrication of the high-parts 

consolidation case, we collect data from two firms to update the process flows as well as the per-step 

data from Fuchs et al. (2011)11 

We use Frohm et al.’s (2008) taxonomy of level of automation to characterize the equipment 

used by each firm in each process step (see Appendix 2.1). This taxonomy allows us to compare level of 

automation across process steps and across firms: process flows in the same automation scenario use 

inputs with the same level of automation. Fabrication is already highly automated across the industry 

(NAS 2013) and therefore does not vary across our automation scenarios.  

 

 

                                                           
11 See online supplement for discussion of the updated data and comparison between fabrication in our medium 
parts consolidation scenario and high parts consolidation scenario (not yet in production). 
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6.2 Baseline Analyses and Sensitivity to Inter-firm Variation 

For each design, we create a baseline production function, and then multiple reconfigurations of 

the production functions based on observed inter-firm variation in inputs. For our baseline production 

function, we use the mean input values reported by each firm. For each design, we prioritize data from 

what our comparison of the per-process step data suggest is the most efficient configuration for each 

step in processing a particular design. Notably, a firm may have the most efficient overall production of 

a design compared to other firms without having the most efficient configuration for each step required 

for producing that design. Leveraging per-step differences across firms, we generate cost best case and 

worst case (i.e. minimizing and maximizing given the per-step inputs available across firms) and labor 

minimizing and maximizing configurations (see Appendix 1.2). The inclusion of interfirm efficiency 

variation in our estimates allows us to independently characterize the labor demand effects of parts 

consolidation and automation even under conditions of firm-specific heterogeneity (driven, e.g., by 

differences in equipment quality within the same level of automation). 

6.3 Model Validation 

We validate our model by comparing our aggregate required inputs to produce each firm’s 

device against in-house aggregate input quantity and cost estimates. We validate our models of each 

firm’s facilities by comparing the quantity of operators and equipment required at annual production 

volumes found in our participant firms to the actual quantity of labor and equipment in each facility. 

Modeling the firms’ production lines using weekly maximum and minimum performance estimates 

generated ranges that fully overlapped with the firms’ in-house capital, material and labor cost 

accounting. Our baseline configurations for all scenarios produced aggregate results that were within 

10% of in-house estimates for four of the five empirical production lines and within 20% of in-house 

estimates for the fifth production process. (see Appendix 2.3) 

6.4. Identification 

Our use of a process-based cost model allows us to directly identify empirical process 

parameters. Firms non-randomly select their level of automation and parts consolidation, based on their 

capabilities and input characteristics (e.g. labor cost).12 As a consequence, one threat to identification is 

that apparent shifts in labor demand partially reflect firm rather than technological characteristics. To 

                                                           
12 This statement is based on our conversations with executives at each firm. 
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help address this issue, we collect a technologically and organizationally representative sample of the 

industry (see data section 5.1). We expect that our sample is representative of the range of firm 

efficiency levels: Given duplication of tasks across the firms, our data includes between 1 and 5 

examples (on average 1.6 in assembly, 1.2 in fabrication) of each of the 362 unique production tasks, 

including at each level of automation and parts consolidation. In addition, to avoid confounding 

technological variation with interfirm variation, our results focus only on instances where labor demand 

differences across scenarios exceed our interfirm variation bands. 

Within our sample, more tasks are automated in production facilities sited in the United States, 

Japan and Europe than in developing East Asia. Thus, another threat to identification is that the 

apparent effect of automation may be biased by relatively higher (lower) labor productivity in certain 

countries. However, we do not believe this is a concern: while level of automation and geography may 

be correlated, the skill demand effects of automation appear consistent across countries. While U.S. 

facilities tend to be more highly automated, our sample also includes U.S. production that is not highly 

automated. We find that these low automation tasks are comparable in their labor productivity (i.e. 

labor time per part) to tasks performed in East Asian facilities at the same level of automation.  

Moreover, more highly automated tasks in facilities across countries do not appear to be consistently 

more or less efficient with geography.  

7. Empirical Results 

7.1 Unit Production Cost Estimates by Scenario 

As can be seen in Figure 4, a low-cost leader does not currently exist across different levels of 

parts consolidation and automation, thus allowing heterogeneous designs to persist in the industry. As 

discussed in section 6.2, the dotted lines reflect our baseline configurations while the bands represent 

the best and worst case configuration of each technology scenario (with normalized axes to protect firm 

confidentiality).13 All cost configurations correspond to fabrication sited in the United States, assembly 

sited in Developing East Asia for low automation scenarios and assembly site in the United States for 

high automation scenarios. Both parts consolidation and automation increase the production cost share 

of capital while decreasing the cost share of operator wages (see online supplement 5).  

                                                           
13The values are normalized such that the highest empirical cost is set equal to $100 and all other costs are 
adjusted proportionally, and the highest production volume in the range presented is set to 100 units with all 
others volumes adjusted proportionally. 
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Figure 4 Unit Costs by Annual Production Volume, Level of Automation and Parts Consolidation 

7.2 Process Flow Breakdowns and Operators by Process Category 

As discussed in section 6.2, the error bars in the following figures reflect labor minimizing and 

maximizing configurations using per-step differences across firms. The figures that characterize labor 

demand are calculated at the median of the annual production volumes described by our industry 

participants.14 At this volume, the production lines in our scenarios mostly have fully utilized equipment, 

with a few exceptions particularly in the most highly automated scenarios. 

Figure 5 shows that the number of fabrication and testing steps increases with more parts 

consolidation, while the number of assembly steps decreases. These results are intuitive because parts 

consolidation fabricates components previously sub-assembled, shifting tasks between these two 

categories of production. The increase in fabrication testing steps from medium to high parts 

consolidation may reflect process engineers expecting early challenges with process variability or quality 

for the high parts consolidation design, which is not yet produced commercially. 

                                                           
14 We find that our results are robust to an increase from the median APV of our empirical sample to our maximum 
sample APV (available upon request). Also, note that number of process steps, shown in Figure 5, is independent 
of APV. 
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Figure 5 Process Breakdowns by Parts Consolidation and Automation Scenario 

Figure 6 shows the number of operators required by process category within the model facility 

to meet the median of the annual production volumes of the facilities included in our data. Unpacking 

Figure 6 helps highlight the importance of the detailed manufacturing model. As can be seen in the 

figure, the number of operators in sub-assembly, final assembly, and testing decreases with parts 

consolidation.15 Although additional testing steps are required for high parts consolidation (as seen in 

Figure 5), labor is shared across testing steps and fabrication testing is sufficiently labor-efficient such 

that there is no significant increase in the net quantity of test operators. The number of fabrication 

operators increases with parts consolidation but decreases with automation (the latter due to higher 

yields in assembly for the automated design and hence, fewer overall components needing to be 

processed through each step). Finally, though the number of operators per part fabricated increases 

with parts consolidation, this effect is offset by improvements in the cumulative yield of assembly. With 

fewer assembly steps in which to have part failures, parts consolidation increases cumulative yields in 

assembly (without increasing per step yields). Better cumulative assembly yields mean fewer fabricated 

parts and fabrication operators required for higher parts consolidation. 

                                                           
15Automation and consolidation both lead to a net decrease in labor demand per widget, but these technological 
changes may affect equilibrium price and output (hence, number of jobs) and possible or optimal geographic 
locations for production: see Appendix 3.3 for further discussion. 
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Figure 6 Number of Operators Required by Scenario and Production Category 

7.3 Heterogeneous Skill Demand Shifts with Different Technological changes 

We find the skill demand effects of automation and parts consolidation differ, both for cognitive 

skills such as operations and control as well as physical skills such as near vision and dexterity. Figure 7 

shows how operations and control skill demand changes with automation and parts consolidation. 

(Appendix 3.1 shows the same for near vision and for dexterity). Automation drives an upward shift in 

operations and control skill requirements, with fewer operators at levels 1 through 3 and more at levels 

4 and 5, and operators reduced the most at levels 2 and 3. In contrast, parts consolidation from low to 

medium drives convergence, with fewer operators proportionally and in absolute terms at the highest 

and lowest levels of skill, and more at the mid-levels (2-4). The shift in the number of operators under 

further parts consolidation from medium to high does not exceed the range of inter-firm variation.  
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Figure 7 Number of Operators by Scenario and Operations and control Requirement 

Figure 8 and Figure 9 show how aggregate measures of technological change can mask the 

opposing labor outcomes of automation and parts consolidation. In these figures, the error bars reflect 

the maximum and minimum differences across scenarios using the labor minimizing and maximizing 

configurations described in section 6.4. For operations and control, aggregate measures suggest a 

decrease in labor demand across skill levels 2-5 and no change for skill level 1. Once disaggregated, we 

see that automation decreases labor demand across all skill levels with the greatest losses in the middle 

(2-4), while parts consolidation increases labor demand across skill levels 2-4, and decreases demand at 

the extremes. For near vision, aggregate measures suggest a decrease in labor demand at the bottom 

and top (skill levels 1 and 5), a decrease skill level 2 but an increase at levels 3 and 4. Once 

disaggregated, we see that automation decreases labor demand in the middle (skill levels 2 and 3), while 

parts consolidation decreases demand at the bottom and top (skill levels 1 and 5), and increases 

demand in the middle (skill levels 2 and 3). Other plots of aggregated versus disaggregated outcomes 

can be seen in Appendix 3.1.  In almost all cases, the aggregate measures mask opposing outcomes.  
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Figure 8 Operations and Control Skill Effects of Disaggregated Automation and Parts Consolidation: 
Shifting from Low Parts Consolidation, Low Automation to Medium Parts Consolidation, High 
Automation 

 

Figure 9 Near Vision Skill Effects of Disaggregated Automation and Parts Consolidation: Shifting from 
Low Parts Consolidation, Low Automation to Medium Parts Consolidation, High Automation 
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7.4 Multi-Dimensional Skill Shifts 

Finally, changes in operator skill requirements may not be independent across skill dimensions. 

Figure 10 shows the joint distribution of demand for operator skills, represented by the number of 

operators of given skill levels required in our model facility to meet a desired annual production volume 

under one of our production scenarios. We measure operator skill simultaneously on two dimensions: 

operations and control, and near vision. We find that moving from low to medium parts consolidation 

(keeping low automation) shifts skill requirements from extremes (e.g. near vision, and operations and 

control ratings both of 1 or both of 5) toward more mid-level skill requirements (e.g. near vision and 

operations and control ratings of 2 or 3). Other plots of joint skill distributions are shown in section 3 of 

our online supplement and suggest that this convergence holds for other skill pairings and for parts 

consolidation from medium to high. 

 

Figure 10 Parts Consolidation from Low to Medium, Under Low Automation: Shifts in the Joint 
Distribution of Operations and Control and Near Vision Skill 

8. Generalizability of Methods and Empirical Findings 

8.1. Generalizability of Methods 

This paper demonstrates that it is possible to use engineering process models and associated 

data to directly measure the implications of current and future technological changes on labor 

outcomes. In doing so, we are able to examine the effects of emerging technological changes on labor 

demand without needing to rely on historic factor substitutions, which are potentially implausible during 
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periods of fundamental technological change (Chenery 1949, Lave 1966, Pearl and Enos 1975, Wibe 

1984, Smith 1986).  In addition, the specificity of our model and data as well as our ability to generate 

counterfactuals technology scenarios enables us to capture different forms of technological change 

invisible in aggregate statistical data.  

The intensity and confidentiality of data required for such engineering process models makes 

large-scale economy-wide analysis comparable to current macroeconomic work impracticable without 

census intervention. That said, insights from a representative sample of firms in a few, carefully selected 

set of industries and technological contexts may uncover novel unexpected insights that can 

subsequently be incorporated into approaches to classical production functions.  Indeed, in the longer 

term we hope models such as these may lead to improvements and alternatives to classical production 

functions, more representative of empirical mechanisms.  In addition, better measurement of 

simultaneous technological changes, many such as parts consolidation not currently part of the 

economics discourse, may lead to a new taxonomy of how different technologies can be expected to 

have different labor outcomes, and that these distinctions could likewise eventually be formally 

characterized in production functions. To quote a 1986 Oxford Review of Economic Policy interview with 

Herbert Simon (The Failure of Armchair Economics), which is still relevant today, “We badly need better 

ideas of how to put together the stuff we find out at the micro-micro level and aggregate it. For that, 

economists need much more data.” Simon continues, “…if you studied about a dozen firms, you have a 

pretty good feeling of the range of behavior you are likely to encounter in firms, … the idea that we must 

have huge samples in order to know how a system works is not necessarily so.” 

8.2. Generalizability of Labor Demand Implications to Semiconductors 

There are important distinctions between different subsectors of the semiconductor industry, 

including photonics and electronics. At the same time, similarities between photonics and other 

subsectors suggest that much of our insights on the labor implications of automation and parts 

consolidation in optoelectronic semiconductors have relevance to the historic, current, and future 

semiconductor industry.  

Design, manufacturing, and technological change in photonic, optoelectronic, and electronic 

semiconductors have many similarities. The vast majority of equipment used in optoelectronic 

semiconductors, including nearly all fabrication (e.g. metal oxide vapor deposition, lithography, etching) 

and much assembly and testing (e.g. pick-and-place, wirebonding, microscopes for visual inspection) 
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have parallels in electronic device production (NAS 2013). Nonetheless, there are important temporal 

differences. Monolithic integration in electronic semiconductors faced 30-40 years ago many of the 

same challenges faced today in optoelectronic semiconductors (Cheyre et al 2015, Yang et al 2016.) 

Monolithic integration in optoelectronics raises materials and process challenges not present in 

electronic semiconductors, several of which remain unresolved (Fuchs and Kirchain 2010).  In addition, 

lack of process control and understanding mean that CAD models enabling the separation of design and 

manufacturing, such as those available in electronics for VLSI, are also yet to be attained (Fuchs and 

Kirchain 2010). Optoelectronics has surely been able to benefit from the electronic semiconductor 

industry’s wealth of knowledge—both in terms of automation as well as the stages of parts 

consolidation (discrete to hybrid to monolithic integration), which optoelectronics proceeds to mimic 

(Cheyre et al 2015, Yang et al 2016) As such optoelectronic semiconductor production is surely more 

advanced than electronic semiconductor production of 40 years ago, despite current technological 

challenges. 

Given the historic parallels, we might expect labor shares for a low automation, low parts 

consolidation case of optoelectronics to resemble but not be exactly the same of those in electronics 30-

40 years ago while labor shares for a high automation, high parts consolidation cases to more closely 

resemble but again not be exactly the same (due to lower levels of parts consolidation and automation) 

as those in electronics today. To explore these similarities, we compare the computed value of labor 

share of costs from our engineering process model to the labor share of costs (payroll over value added) 

derived from the aggregate historical data from the Semiconductor and Related Device Manufacturing 

(NAICS 334413) industry, as available in the NBER Center for Economic Studies (CES) Manufacturing 

Industry Database.  Optoelectronic semiconductors would be a part of the NAICS category, but with 

annual optoelectronic production volumes in the millions compared to total semiconductor annual 

production volumes forecasts above 1 trillion units in 2018 (IC Insights), electronic semiconductor trends 

(and particularly electronic integrated circuit production) will easily dominate the aggregate data (Khan 

et al 2018).  

Table 4 PBCM-Based Labor Share of Input Costs 

Scenario Labor Share 

Low Parts Consolidation Low Automation 0.442 

Medium Parts Consolidation Low Automation 0.308 

Medium Parts Consolidation High Automation 0.232 

High Parts Consolidation High Automation 0.184 
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As shown in Table 4, we can use our PBCM to determine how different technological 

developments affect the cost share of labor. As expected, an increase in the degree of automation and 

part consolidation reduces the overall share of labor costs in the production process. We next compare 

this value with aggregate US data. We find that the labor share in our low parts consolidation, low 

automation scenario compares with the industry labor share in the mid-80s (the average for the years 

84-86 is equal to 0.435). The labor share in our high parts consolidation, high automation scenario 

(which is not yet on the market) compares with the overall industry labor share first achieved in the late 

90s (the average for the years 97-99 is equal to 0.167). The labor share in the industry remained fairly 

flat with an average labor share of 0.182 for the period from 2000-2011. The placement of 

optoelectronics’ labor shares within the overall semiconductor industry are within the bounds of what 

we might expect given technological change in both. These results are suggestive that understanding 

technological change and labor outcomes in optoelectronics may have relevance in thinking about 

technological change and labor outcomes in the broader industry historically as well as more recently. 

Further, the increasing substitution of photonics for electronics (NAS 2013) would suggest that findings 

from the optoelectronics subsector will increase in relevance. 

8.3. Generalizability of Labor Demand Implications of Automation versus Parts Consolidation 

(Operators in Other Manufacturing Industries) 

To better understand our findings and identify hypotheses for their generalizability, we 

aggregate our detailed O*NET findings to identify common trends and suggest mechanisms behind 

these trends.  See Figure 11 and Figure 12. 

We aggregate our detailed O*NET findings on the change in demand for skills in two ways: first, 

we group the O*NET skills we collect into one of two broader categories: cognitive or physical.  The 

operations and control skill is the cognitive category; we group dexterity and near vision skills under the 

physical category. Second, we group the O*NET skill ratings into one of three broader categories: low, 

medium, and high.  Here, we label a skill rating of 1 as “low,” a rating of 2, 3, or 4 as “medium,” and a 

rating of 5 as high. We then translate into these groupings our detailed findings on the change in skill 

demand—here, number of operator jobs requiring a given level of skill—with technological change. For 

example, to calculate the change in demand for low cognitive skill with automation, we calculate the 

difference in the number of jobs at operations and control skill level 1 between our low automation, 

medium parts consolidation and our high automation, medium parts consolidation scenarios (thus 

holding parts consolidation constant while changing automation). To calculate the change in demand for 
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medium cognitive skill with automation, we calculate the difference in the total number of jobs at 

operations and control skill levels 2, 3 and 4 between our low automation, medium parts consolidation 

and our high automation, medium parts consolidation scenarios. For example, to calculate the change in 

demand for low physical skill with automation, we add the number of jobs with dexterity skill level 1 or 

near vision skill level 1, and then calculate the difference in number of jobs between our low 

automation, medium parts consolidation and our high automation, medium parts consolidation 

scenarios. Note that due to our aggregation of physical skills, a single job may appear in Figure 11 and 

Figure 12 in two different physical skill categories: for example, a job lost (gained) requiring low near 

vision skill and high dexterity skill would count toward changes in both low and high physical skill.   To 

calculate the change in relative medium physical skill demand with automation, we calculate the 

number of jobs requiring dexterity skill levels 2, 3 and 4 or near vision skills 2, 3 and 4, and we then 

calculate the difference in this number of jobs between our low automation, medium parts 

consolidation and our high automation, medium parts consolidation scenarios. For parts consolidation, 

since we measure two shifts in parts consolidation (low-to-medium and medium-to-high), we plot the 

results for both beside each other and only propose a generalizable relationship between parts 

consolidation and physical or cognitive skills, if both changes in parts consolidation shift labor demand in 

the same direction for a given skill grouping (as for our empirical results in 7.3, the error bars in Figure 

11 and Figure 12 reflect the maximum and minimum differences across scenarios using the labor 

minimizing and maximizing configurations described in 6.4). Thus, the effects of technological change on 

relative demand for cognitive skill are given by the change in operator jobs by skill level, while the 

effects of technological change on physical skill are expressed as the change in operator jobs by skill 

level in either near vision or dexterity. We show intermediate outputs in Appendix 3.2 and the full 

equations for our calculations in Appendix 1.3. 

We find that the number of jobs with high cognitive skill requirements decreases under both 

low-to-medium and medium-to-high parts consolidation. While we find that the number of jobs with 

medium physical skill requirements increases under low-to-medium and medium-to-high parts 

consolidation, some individual skill levels within the medium category show decline or no change. 
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Figure 11 Aggregate Change in Number of Operator Jobs by Cognitive and Physical Skill Level Under 
Automation 

 

Figure 12 Aggregate Change in Number of Operator Jobs by Cognitive and Physical Skill Level Under Parts 
Consolidation 

In the case of automation (Figure 11), we see demand for physical and cognitive skills shifting away from 

the middle, leading to skill polarization in operator jobs. We find that demand for high physical skills 

decreases with automation: fabrication is already highly automated throughout our dataset and manual 

assembly steps with higher physical skill requirements are replaced by machines. Automation does not 

change aggregate demand for low level physical skills: manual tasks with the lowest skill requirements 

tend to be automated, but the physical requirements of the operator production tasks created by 

automation tend to be at a lower skill level (e.g. pressing a button, loading and unloading a part, 

monitoring a machine lifting a piece). We find that automation reduces medium physical skill demand 

more than demand for high physical skill: assembly tasks with high physical skill requirements often 
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involve complex part geometries that make them harder to automate than more straightforward 

medium physical skill assembly tasks. Automation reduces demand for high level cognitive skills: 

automation can affect process steps with high cognitive skill requirements (e.g. complex assembly 

steps), but it is offset partly in some cases by automated processes leading to the creation of new tasks 

(e.g. calibration or monitoring) with high operation and control skill requirements. Automation also 

reduces demand for low level cognitive skills: while the least complex assembly steps are often 

automated, some of the new tasks created by automation require a low level of cognitive skill (e.g. 

loading and unloading equipment). Automation most reduces demand for medium level cognitive skills: 

assembly steps of medium complexity, and hence requiring medium cognitive skill levels, are more often 

automated than high complexity, and new tasks created by automation do not tend to have medium 

level operation and control skill requirements.  

We find that parts consolidation (Figure 12) does not have a singular effect on the demand for 

skills. In contrast to automation, parts consolidation in no cases polarizes skill demand. In aggregate, 

parts consolidation converges demand for both the physical and cognitive skills required of operators in 

the industry. As more parts are monolithically fabricated as a single unit and assembly steps (and 

associated tasks) eliminated, demand for the highest level of physical skills is often reduced as these 

higher level skills are predominantly required in assembly. Demand for the lowest level of physical skills 

is also often reduced, as tasks in fabrication and assembly formerly requiring low level skills are 

transformed to require more medium (or high) skill levels. For both fabrication and assembly, the 

increase in physical skills from low to medium (or high) may be associated with consolidated parts 

having a greater cost of production failure, and thus a demand by the firm for increased skill 

requirements to minimize failure.16 As more parts are monolithically fabricated as a single unit and 

assembly steps (and associated tasks) eliminated, demand for high level cognitive skill consistently 

decreases. This decrease is frequently due to the elimination of more complex assembly tasks with 

higher cognitive requirements such as part orientation and the management during assembly of more 

complex geometries.  In addition, with fewer total parts, there are fewer opportunities for testing, which 

also tends to require higher cognitive skills. Demand for the lowest level of cognitive skills is also often 

                                                           
16 This increase in the cost of failure is greatest when parallel lines are merged, which is more pronounced in our 
transition from low to medium than from medium to high consolidation, the latter where the reduction in 
assembly steps dominates skill demand outcomes. This difference between the two transitions shows up in Figure 
35 of Appendix 3.2 in that moving from low to medium consolidation shifts skill demand from low to high 
dexterity, while moving from medium to high consolidation shifts skill demand from high to medium dexterity. 
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reduced, as tasks in fabrication and assembly formerly requiring low level skills are transformed to 

require more medium skill levels. For example, in fabrication, certain deposition steps become longer 

and more complex, including requiring more monitoring and calibration. 

We expect the common trends we identify – polarization of skill demand for automation and 

convergence of skill demand for parts consolidation – and their associated mechanisms to largely 

generalize beyond semiconductors to other manufacturing contexts and to have important parallels in 

non-manufacturing contexts. We expect the common trends to be especially relevant for those workers 

directly involved in production.  

For automation, we hypothesize that the patterns of polarization of operator physical and 

cognitive skill demand to persist across manufacturing industries. Which process steps are automated 

will naturally influence which skills are affected: In many manufacturing contexts, automation of routine 

codifiable tasks shifts demand toward low physical skills. While not visible in the aggregate trends, there 

are also cases in our data in which high physical skill requirements are correlated with difficulties in 

automation, meaning that work with highest physical skill requirements may be preserved (at least in 

the short term).  We expect this less dominant trend to also generalize other manufacturing contexts. 

We likewise expect the polarization of operator cognitive skill demand under automation to persist 

across manufacturing industries, and have important parallels in other contexts.  In many manufacturing 

contexts, automation of routine, codifiable tasks is likely to reduce demand for medium and high 

cognitive skills, while sometimes simultaneously creating more cognitively demanding jobs in equipment 

monitoring, calibration and maintenance.  Likewise, in many manufacturing contexts, jobs with the 

lowest cognitive requirements are both eliminated and at times created (such as button pushing) by 

automation. 

For parts consolidation, we hypothesize that the patterns of convergence of operator physical 

and cognitive skill demand to persist across many if not most manufacturing contexts. One possible 

limitation in extending our findings on the physical skill demand implications of parts consolidation to 

outside industries is that parts consolidation of sufficiently large parts (e.g. many discrete auto body 

components into very large single pieces (e.g. Patrick and Sharp 1992)) may lead to parts too large for 

human workers to manage (e.g. too heavy to lift).  This may force a shift under parts consolidation 

toward automation or collaborative robotics (e.g. a machine to lift formerly portable components), thus 

moving physical skill demand toward lower skill.  However, we expect that parts consolidation, when 

coupled with miniaturization or focused on modestly sized components, will have effects on physical 
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skill demand across manufacturing similar to our findings.  Higher skilled work, especially the assembly 

of very small components, will be reduced in some cases, while lower skill work may be upskilled to 

account for the increased cost of production failure from de-parallelization of production: in some 

instances, this upward pressure will lead to an increase not only in mid-skill demand but also demand 

for high physical skill.  We expect cognitive skill demand to increase for medium skill jobs in other 

manufacturing contexts. In industries with high cognitive skill tasks affected by parts consolidation, we 

expect such jobs to be reduced, while in all industries we expect lower skill jobs may be upskilled to 

account for the increased cost of production failure from de-parallelization of production. 

Further work is required to explore the relevance of these findings in non-manufacturing 

contexts, such as software and design. 

9. Discussion: Toward a Theory of Technological changes and their Effects on Tasks, Jobs, and 

Occupations 

Our task-level manufacturing data enables us to operationalize and expand the task-based 

theory described by Acemoglu and Restrepo (2016). 17 

9.1. A Taxonomy for Technological change’s Effects on Tasks 

A task is characterized by a performer (here, human labor or a machine) and an action done by 

that performer to produce an intermediate good (e.g. partial assembly of a device) toward a final 

product in a production process. Given our data, rather than being forced to think about categories of 

tasks per O*NET, we are able to define the task as an action whose performance would not naturally be 

divided into smaller units.  For example, in automotive body assembly, a single rivet to connect two 

parts is indivisible, each required rivet is a different task and might be performed by a different 

performer. Indeed, in automotive body assembly, with higher production volumes, more performers are 

brought in to each do fewer of the total required rivets.  

Technological change may or may not change the performer and may or may not change the 

action.  For example, if a component cleaning task is automated, the same action previously performed 

by a human may instead now be performed by a machine.  In this case, the action associated with the 

task is unchanged.  Alternatively, if in automating cleaning, the machine now performs a different, and 

more precise action, the action associated with the task is transformed. 

                                                           
17 Mathematical formalization of the theory that follows is available upon request. 
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When performed by a human, a task has a set of skill requirements. If the action associated with 

a task is transformed, the skill requirements may also change.  For example, if a task to join two parts 

changes from welding to adhesive joining, but both actions still require high skill levels, then the nature 

of the task is transformed but the skill requirements remain the same. In the context of this paper, we 

group skill requirements into physical and cognitive, each with bins of low, medium or high (Figure 13).  

The skill requirements of a human performer of a task can be thought of in terms of the O*NET 

categories, which are grouped by O*NET into two domains: cognitive versus physical.  Simplifying O*NET 

(whose scale goes from 1-7), the required skill can be thought of as existing on a difficulty scale (which 

we represent below as ranging from low to medium to high).  In the theoretical discussion and figures 

that follow, we represent cognitive skill requirements with an icon of a brain, and physical skill 

requirements with an icon of a flexing arm.  We represent the skill level by changing the size of the 

image – with larger images indicating greater difficulty. 

 

Figure 13 Icon Legend by Skill Type and Skill Level18 

A job is held by a single human worker and, similarly to Autor, Levy and Murnane (2003) and 

Brynjolfsson, Mitchell and Rock (2018), we consider a job as a union of one or more tasks (Figure 14).  

                                                           
18 Muscle icon source: Freepik. All other icons, Microsoft PowerPoint 
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We define the skill requirements for a job as the maximum of the skill requirements for the tasks that 

make up the job.  

 

Figure 14 Aggregating Task Skill Requirements into Job Skill Requirements 

 

Figure 15 Mechanisms by which technological change affects tasks: Elimination, Creation, 
Transformation (Elimination and Creation) and Performer Substitution 

Building on our empirical findings, Figure 15 presents the mechanisms by which technological 

change affects tasks: Technological change can eliminate existing tasks and can create new tasks. 

Technological change transforms the actions associated with tasks when it eliminates existing tasks and 
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creates new ones to replace them with different actions but the same objective (i.e. same intermediate 

output). Finally, technological change can substitute who or what performs tasks.  

Within the above taxonomy, automation by definition substitutes the task performer – 

specifically machines for humans (as shown in the performer substitution example in Figure 15). Parts 

consolidation by definition changes the design and thereby transforms the actions required to create 

that new design (as shown in the transformation example in Figure 15). These relationships are 

summarized by the solid arrows in Figure 16. Additional relationships that are possible by not required, 

are shown with dotted lines. As discussed earlier, automation may change the action associated with a 

task. Likewise, changing the action associated with a task may lead to different skill requirements. 

 

Figure 16 Mechansisms of Task Change through Parts Consolidation and Automation 

Figure 17, Figure 18, and Figure 19 conceptualize key trends observed in our empirical findings 

for how automation and parts consolidation change task and job skill requirements. Figure 17 and Figure 

18 conceptualize how automation polarizes skill demand as routine, codifiable tasks requiring low and 

medium skills are executed by machines instead of humans, while the remaining (Figure 17) and newly 

created (Figure 18) human tasks tend to require low and high skills. Figure 19 conceptualizes how parts 

consolidation converges skill demand as formerly divisible low and high skill tasks are transformed into a 

single indivisible task with medium skill requirements and higher cost of failure.  
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Figure 17 High Level Skill Effects of Parts Consolidation 

 

Figure 18 High Level Skill Effects of Automation 
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Figure 19 High Level Skill Effects of Automation with Task Creation 

9.2 Categories of Tasks: Mediating the effect of technological change on job skill requirements  

We now consider the impact of technology on skill requirements. Based on our manufacturing 

task data, we divide tasks into one of three categories –  preparation, execution, and monitoring – 

where a process step could contain multiple tasks in a given category. We give examples of each of 

these types of tasks from our empirical setting in Table 5. We know from past PBCMs that these task 

categories generalize across manufacturing industries (Fuchs et al. 2008, Johnson and Kirchain 2009, 

Fuchs et al. 2011). We expect these task categories to also be informative in other production contexts, 

including software and services. 

Table 5 Task Categories and Examples 

Category of Tasks Examples of Tasks Example of Aggregation into Step 

Preparation Loading/Unloading a 
machine, Calibration, 
Laying out tools in a 
workstation 

Wire bonding 
Preparation 
Clean Station 
Load Station 
Execution 
Apply adhesive 
Attach wire to die 
Attach wire to substrate 
Monitoring 
Check wire hold 

Execution Hand wire bonding two 
parts, Activating a chemical 
vapor deposition machine 

Monitoring Is the operation running 
correctly? Does the part 
look of high quality? 
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We observe systematic differences in the rate at which technological change affects task 

categories. We find that different task categories are automated at different rates:19 we find that a 

majority of automated tasks are execution, followed by monitoring (see Table 6). The large majority 

(91%) of production steps with automated tasks include an automated execution task (Table 7), with 

few cases of monitoring automated alone (9%) and no cases of preparation automated alone.  Parts 

consolidation affects task categories differently than automation: whereas automation affects different 

task categories at different rates, consolidation in our data affects all task categories equally. 

Table 6 Level and Share of Automation by Task Category 

Task Category Task Automation within Category Share of all automated Tasks 

Preparation 3% 3% 

Execution 53% 64% 

Monitoring 27% 33% 

Table 7 Combinations of task categories automated within steps 

Combinations of task categories automated within steps 
Number of Steps 
Associated 

Share of all 
automated tasks 

Execution automated alone 22 49% 

Execution automated, monitoring automated 17 38% 

Monitoring automated alone 4 9% 

Preparation automated, execution automated 2 4% 

Preparation automated alone 0 0% 

Preparation automated, monitoring automated 0 0% 

All automated 0 0% 

We believe that the propensity for execution steps to be automated is likely to generalize more 

broadly in manufacturing, as routine and codifiable execution tasks formerly conducted by humans are 

instead performed by machines. For example, in our data, one commonly automated execution step is 

die-attach: the task of picking up and placing a die onto an adhesive-prepared surface is repetitive and 

well characterized. As is the case in our data (Table 7), we suspect that within current technological 

constraints that automation of monitoring tasks often happens along with or after automation of 

execution tasks. The automation of monitoring requires codification of proper execution: for example, in 

our data, an automated monitoring process for fluid deposition on a wafer surface requires parameters 

for the thickness and distribution of fluid. Hence, if monitoring can be automated, execution usually has 

already been codified and had the potential for automation. Automating preparation tasks such as 

                                                           
19 While our task data is limited to assembly, the highly automated fabrication at all firms would likely not have 
provided many examples of manual vs. automated tasks for detailed comparison. 
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equipment loading or part transfers between equipment may not be cost-effective at the production 

scales observed in our data.   

In Figure 20, Figure 21, and Figure 22, we illustrate predominant mechanisms from our empirical 

data of automation and consolidation’s effect on job skill requirements through task-level changes.  In 

Figure 20, automation substitutes a machine for human labor in an execution task.  Automation shifts 

job requirements from medium to low skill.  By substituting a machine for a human in the most 

physically and cognitively intensive task of the process step (one requiring medium skills), automation 

shifts the minimum skills requirements for the job from medium to low. In Figure 21, the performer 

substitution of a machine for a human in the execution step is such that it requires also creating a new 

monitoring task which is more cognitively skill-intensive than the existing tasks.  This shifts physical skill 

requirements for the job from medium to low but increases cognitive requirements from medium to 

high. In Figure 22 parts consolidation eliminates a task with high skill requirements and transforms the 

remaining tasks from requiring low skill to requiring medium skill. Tasks which may have been split 

among workers – one low-skilled and the other high skilled – must now constitute one medium skill job. 

 

Figure 20 Example of Performer Substitution under Automation 

 



40      Combemale, Whitefoot, Ales, Fuchs: Not all technology change is equal 

Please contact authors for updates before citing 
 

 

 

Figure 21 Example of Job Requirement Changes through Automation (Substitution, Creation) 

 

Figure 22 Example of Job Requirement Change through Consolidation 

10. Conclusions 

A significant literature identifies skill-biased technological change as a driver of the polarization 

of wages and employment in the economy (e.g. Card and DiNardo 2002, Autor and Dorn 2013). This 

literature faces the limitations of coarse and aggregate data such as having to use education or wage 

percentile as a measure of skill (e.g. Carneiro and Lee 2011, Autor and Dorn 2013), and having to use 

aggregate capital spending as a measure of technology adoption (e.g. Bresnahan et al. 2002, Michaels et 

al. 2014). In addition, future technological effects on labor outcomes may not necessarily correspond to 

past phenomena. A recent literature has emphasized the need to consider task-level implications of 

technological change (Acemoglu Autor 2011 and Acemoglu Restrepo 2016). Empirical evidence of the 

benefits of such task-based approaches includes surveying of managers on the facility-level (rather than 
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process step and task) impact of information technology adoption on skill requirements (Bartel et al. 

2004 and 2007) and crowd-sourcing of which O*NET skills and work tasks are likely to be automated 

(Brynjolfsson, Mitchell and Rock 2018). While these papers provide indirect indications by surveying of 

experts, managers and general respondents in the cloud (e.g. Amazon MTurk), to date direct 

measurement of technological effects on skill requirements has been lacking. This paper fills that gap.  

Our paper demonstrates the benefits of directly measuring the effect of technological changes 

on skill demand, here, achieved by using an engineering process model and detailed, equipment-level 

production data.  The specificity of our model and data as well as our ability to generate counterfactual 

scenarios enables us to simulate past, ongoing and emerging technological changes, thus going beyond 

the restrictive assumptions of classic production functions, of aggregate data, and of historic data being 

representative of the future. We are also able to disentangle simultaneous technological changes with 

differential labor effects invisible in aggregate data, and to characterize task-level mechanisms behind 

our findings regarding the effects of technological change on skill demand.   

We make five contributions. First, we directly measure the effect of technological changes on 

skill demand, addressing the gap in the task-approach literature. In addition to automation’s effect on 

labor demand, we measure the effect of parts consolidation, a product innovation that allows formerly 

discrete parts to be fabricated as a single component (Schwedes 2001). Second, we show that aggregate 

measures of technological change can mask the opposing skill demand shifts of multiple technological 

changes. Understanding these differential effects of technologies on labor outcomes is a key first step to 

analyzing the impact of emerging technological changes on labor demand, and eventually markets. 

Further, challenges with awareness, identification, and measurement of such simultaneous forms of 

technological change in aggregate data may complicate causal inference using traditional methods.   

Third, whereas the majority of SBTC research has been economy-wide, our results are within an 

occupation, here operators. Our focus on jobs requiring a lower level of education helps unpack how 

technological change is affecting a population of workers known to have low workforce participation 

(BLS 2018) and particular vulnerability to technological displacement (Autor and Dorn 2013, Acemoglu 

and Restrepo 2017). 
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Fourth, we find that automation polarizes while parts consolidation converges skill demand 

within an occupation.20 In the case of automation, we see demand for physical and cognitive skills 

shifted in opposing directions, leading to skill polarization among operators within the industry. One 

predominant mechanism underlying these results is machines replacing humans in more physically and 

cognitively intensive work, such as intricate assembly tasks, but also creating more cognitively intensive 

work, such as monitoring of automated processes. These findings build on Bartel et al.’s (2007) facility-

level survey findings, in which managers report that that adoption of new IT-enhanced capital 

equipment coincides with increases in the skill requirements of machine operators. In contrast to 

automation, parts consolidation converges demand for the physical and cognitive skills required of 

operators in the industry. As more parts are monolithically fabricated as a single unit, assembly tasks 

requiring the highest physical and cognitive skills are eliminated, and fabrication and assembly tasks 

requiring the lowest physical and cognitive skills are transformed to tasks requiring more middle-level 

skills. Parts consolidation also reduces opportunities for divisions of labor between tasks of different skill 

levels, further shifting demand (in our data) from low to medium or (we hypothesize sometimes in other 

industrial contexts) to high.  This shift from low to middle-level (or high) skills is in part associated with 

consolidated parts having a greater cost of production failure, and thus a demand by the firm to 

minimize such failures. 

Fifth, we leverage our task- and step-level data to propose new theory for the mechanisms 

underlying the effect of technological change on skill demand: We propose that technological change 

leads to three outcomes for tasks and their associated skill requirements: task elimination, task creation, 

or performer substitution.  Within our taxonomy, automation by definition leads to performer 

substitution, parts consolidation by definition to task transformation task (defined as elimination 

followed by creation).  

The mapping of the differential effects of technologies on labor outcomes presented for the first 

time in this paper, along with its associated theoretical framework for thinking about such change, 

introduce new dimensions to the effect of technological change on labor demand, and open up new 

questions regarding the implications for labor markets and appropriate policy response.  

                                                           
20 While beyond the scope of this paper, we hypothesize that consolidation will also converge skill demand across 
occupations. We further hypothesize that direct measurement will uphold the theory that automation polarizes 
skill demand across occupations. 
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Appendix 1: Equations 

Appendix 1.1: Process-based Cost Model Architecture and Cost Calculations 

We build on the model decision rules used in Fuchs and Kirchain (2010) and Fuchs, Kirchain, and 

Liu (2011), the full equations for which can be found in Fuchs and Kirchain (2010). Rather than using the 

notation from Fuchs and Kirchain (2010) we represent the same and our new equations using the 

notation from Quantitative Entrepreneurship: Analysis for New Technology Commercialization (Michalek 

and Fuchs 2018). This newer notation provides several advantages in the extensions we develop over 

Fuchs and Kirchain (2010).  

Per Fuchs and Kirchain (2010), aggregate costs are calculated as follows: 

𝐶𝑇𝑜𝑡 = 𝐶𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝐶𝐿𝑎𝑏𝑜𝑟 + 𝐶𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 + 𝐶𝑇𝑜𝑜𝑙𝑖𝑛𝑔 + 𝐶𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝐶𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
𝐴𝐶𝑒𝑙𝑒𝑚𝑒𝑛𝑡

𝑃𝑉
 

Where 𝐶𝑡𝑜𝑡 is the unit production cost of the product, given an annual production volume PV. 

𝐶𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is the unit cost of an element (material, labor, equipment, tooling, building) and 𝐴𝐶𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is 

the annual cost of each element. 

Compared with Fuchs and Kirchain (2010), we do not include energy costs as in Fuchs et al 

(2011), energy costs in the production of an optoelectronic device were less than one percent of unit 

production cost. We also, different from Fuchs and Kirchain (2010) do not include overhead costs, as our 

focus is on direct production and labor demand.  

We do not calculate embedded yields, i.e. yields that happen during the process but are not 

caught until later testing steps (see Fuchs and Kirchain (2010) for an extended discussion), as we do not 

have that information (nor did Fuchs and Kirchain (2010), in their case the embedded yields were 
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estimates by engineers as to where the revealed yields were coming from.) In our paper, all yields are 

simply accounted for at the step where they show up empirically. 

Material Cost:  

We treat material costs as in Fuchs and Kirchain (2010), except we do not include a material 

scrap rate (i.e. extra material needed due to excess material that does not end up on the final part). This 

difference is because we received material inputs as total material required to go through one 

processing cycle (widget or batch of widgets) at each step, rather than as an amount of material 

required for the actual part plus some amount of additional material required for the step that would be 

lost and not end up on the final part.  

Labor Cost: 

We consider only direct operator labor for this paper. Our labor cost equation has two 

differences from Fuchs and Kirchain (2010): first, matching our empirical observations, we treat 

operator labor as always dedicated to process steps (labor is not dedicated in Fuchs and Kirchain 

(2010)); in our empirical observations operators did not move between machines. Second, whereas all 

operators have the same wage in Fuchs and Kirchain (2010), in our model, we have different average 

operator wages for different process steps. Hence: 

𝐴𝐶𝑙𝑎𝑏𝑜𝑟 = ∑ 𝑊𝑗(𝑡𝑗
𝐴𝐿𝐵)𝑢(𝐸𝑃𝑉𝑗)

𝐿𝐵

𝑗

 

𝑊𝑗 is average operator wage in step j (this may vary if some steps are performed in different 

locations); 𝑡𝑗
𝐴𝐿𝐵 is the annual hours worked by an operator employed in a production step (in our model, 

typically 40 hours a week, 50 weeks a year for 2000 hours a year, but allowed to vary). 𝐸𝑃𝑉𝑗 is the 

effective production volume of step j: taking the annual production volume PV of the finished good as 

given, 𝐸𝑃𝑉𝑗 is a function of both PV and the product of the yield rates 𝑦𝑛 of subsequent steps in the set 

N (the production path to which step j belongs): 𝐸𝑃𝑉𝑗 = 𝑃𝑉 ∏ 𝑦𝑛𝑛≥𝑗+1,𝑛∈𝑁 . 

𝑢(𝐸𝑃𝑉𝑗)
𝐿𝐵

 is the annual quantity of laborers demanded at a given process step:  

𝑢(𝐸𝑃𝑉𝑗)
𝐿𝐵

= ⌈
t(𝐸𝑃𝑉𝑗)

𝐿𝐵

𝑡𝑗
𝐴𝐿𝐵 ⌉, and 𝑡(𝐸𝑃𝑉𝑗)

𝐿𝐵
=

𝑛(EPVj)
𝐿𝑁

𝑡𝑗
𝐴𝑉𝐿

 𝜙𝑗
𝐿𝐵𝜌𝑗

𝐿𝐵   
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Where t(𝐸𝑃𝑉𝑗)
𝐿𝐵

 is the annual labor time required in step j to satisfy effective production 

volume, 𝑛(EPVj)
𝐿𝑁

 is the number of capital lines required in step j to satisfy its effective production 

volume, 𝜙𝑗
𝐿𝐵 is the fraction of equipment time requiring a human operator and 𝜌𝑗

𝐿𝐵 is the number of 

pieces of equipment in step j that one operator can manage and 𝑡𝑗
𝐴𝑉𝐿 is the net available annual hours 

(after downtime) that capital in step j can operate. 

Capital Cost: (equipment and tooling)  

We annualize costs using the standard capital recovery factor formula, as in Fuchs and Kirchain 

(2010). As with Fuchs and Kirchain (2010), we use a discount rate of 10%. 

We treat equipment and tooling costs and calculate capital lines required 𝑛(EPVj)
𝐿𝑁

as in Fuchs 

and Kirchain (2010) and denoted in Michalek and Fuchs (2018), but with expanded options for capital 

sharing: in addition to capital dedicated to a process or shared across other products outside our model 

scope, we allow cases of capital sharing across multiple specific steps within the same production 

process but not across products. If capital is dedicated to the overall production process but shared 

across process steps in the set G of cardinality R, we define 𝑛(EPVj)
𝐿𝑁

 the lines required in step j: 

𝑛(EPVj)
𝐿𝑁

=
𝑟𝑒𝑞𝐿𝑇𝑗 

𝑎𝑣𝑎𝑖𝑙𝐿𝑇𝑗
+ ⌈⌈∑

𝑟𝑒𝑞𝐿𝑇𝑔

𝑎𝑣𝑎𝑖𝑙𝐿𝑇𝑔
𝑔∈𝐺

⌉ − ∑
𝑟𝑒𝑞𝐿𝑇𝑔

𝑎𝑣𝑎𝑖𝑙𝐿𝑇𝑔
𝑔∈𝐺

⌉ /𝑅 

Where 𝑟𝑒𝑞𝐿𝑇𝑗 is the line time required in step j to meet effective production volume (as in 

Fuchs and Kirchain (2010)) and 𝑎𝑣𝑎𝑖𝑙𝐿𝑇𝑗 is the available annual time per line. 

Building Cost: 

In Fuchs and Kirchain (2010), building costs are linear with equipment, but they are described as 

a more general function of building capacity and required line time. We explicitly relate building costs 

linearly with equipment requirements, as in Michalek and Fuchs (2018):  

𝐴𝐶𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = ∑ 𝑛(EPVj)
𝐿𝑁

𝑗

𝐴𝑗𝑝𝑞
𝐵𝐿  

Where 𝐴𝑗,𝑞 is the square footage of type q (e.g. a cleanroom) required of capital in step j 

and 𝑝𝑞
𝐵𝐿  is the annualized cost per square foot of facility space type q, annualized using the standard 

capital recovery factor. 



46      Combemale, Whitefoot, Ales, Fuchs: Not all technology change is equal 

Please contact authors for updates before citing 
 

 

Appendix 1.2: Calculating Skill Demand and Interfirm Variation Ranges 

Skill Demand: 

In order to calculate operator skill demand from our model, we first multiply the number of 

operators required at a given process step by a 5x3 index matrix of the skills 𝑆𝑗 required for that step: 

𝑆𝑗𝑢(𝐸𝑃𝑉𝑗)
𝐿𝐵

= [

𝐷𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦1,𝑗 ⋯ 𝑂𝑝𝑠&𝐶𝑜𝑛𝑡𝑟𝑜𝑙1,𝑗

⋮ ⋱ ⋮
𝐷𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦5,𝑗 ⋯ 𝑂𝑝𝑠&𝐶𝑜𝑛𝑡𝑟𝑜𝑙5,𝑗

] 𝑢(𝐸𝑃𝑉𝑗)
𝐿𝐵

= 𝐷𝑗 

Where 𝑢(𝐸𝑃𝑉𝑗)
𝐿𝐵

 is the annual labor demanded at process step j for an annual output 𝑃𝑉𝑗 from 

step j, and where 𝑆𝑘𝑖𝑙𝑙𝑗,𝑚 indicates for a given skill in step j the level m of difficulty required [1-5].  

𝑆𝑘𝑖𝑙𝑙𝑗,𝑚takes the value 0 if skill level m is not required and 1 if required, and ∑ 𝑆𝑘𝑖𝑙𝑙𝑗,𝑚
5
𝑚=1 = 0 

(meaning that two levels of the same skill cannot be required for the same step:21 within our theory, the 

higher of the two levels would be the required skill level).  Thus, 𝐷𝑗 is a matrix of process-step level 

demand for skill. The sum across the entire production process thus gives us the process-level demand 

matrix for skill: 

𝐷 = ∑ 𝐷𝑗

𝑁

𝑗=1

 

Process Configurations that Minimize and Maximize Unit Production Cost or Labor 

In order to account for interfirm variation (see section 6.3-6.4), we select sequences of inputs 

(from the available empirical alternatives for each production step in the process) that will maximize or 

minimize unit production cost and labor quantity required and use these to construct ranges of 

production cost and labor demand. 

Each step j in a production process has a set of alternative equipment inputs {𝐼𝑗} drawn from the 

empirical examples in our data of different firms performing the same production task. For a given 

scenario we refine the set {𝐼𝑗} to elements whose level of automation corresponds to the scenario (i.e. 

high or low): {𝐼𝑗} ∩ {𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑜𝑛}: the mechanisms for interfirm variation hold with or 

without this refinement. 

                                                           
21It may be possible for different tasks within a process step to require different levels of the same skill level, but in 
our empirical context operator jobs are at the process step level. 
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All elements 𝑖𝑗 ∈ {𝐼𝑗} have corresponding Leontief production functions relating capital, material 

and labor inputs to 𝑦𝑗, the annual output of the step j: because of our Leontief construction, the 

selection of capital alternatives includes labor and material requirements. Because we collect our skill 

requirement data at the process-step level, each 𝑖𝑗 also has a corresponding skill requirement matrix, 

𝑆𝑗,𝑖.  

Given 𝑦𝑗, we can select 𝑖𝑗 ∈ {𝐼𝑗} such that the cost or labor requirements of step j are minimized 

or maximized: 

The range of labor required in a given production step is given by: 

[ min
𝑖𝑗∈{𝐼𝑗}

𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)𝐿𝐵 , max
𝑖𝑗∈{𝐼𝑗}

𝐿(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐿𝐵

] 

Thus, the range of labor skill demand for a production process is given by:  

 [∑ 𝑆𝑗,𝑖 min
𝑖𝑗∈{𝐼𝑗}

𝐿(𝑖𝑗, 𝐸𝑃𝑉𝑗)𝐿𝐵𝑁
𝑗=1 , ∑ 𝑆𝑗,𝑖 max

𝑖𝑗∈{𝐼𝑗}
𝐿(𝑖𝑗, 𝐸𝑃𝑉𝑗)

𝐿𝐵
] 𝑁

𝑗=1  

Where 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐿𝐵

 is the quantity of labor demanded in step j given the input alternative 𝑖𝑗 

and the effective production volume of step j. 

The range of annual production costs for step j is a function of input requirements as a function 

of 𝑖𝑗 and 𝑦𝑗  multiplied by the vector of input prices. Input prices are collected for each possible input in 

our data and are expressed as a function of 𝑖𝑗 (i.e. while material and labor prices are invariant in choice 

of 𝑖𝑗 𝑖𝑗 determines which type of capital is used and hence, the price of a unit of capital). 

[ min
𝑖𝑗∈{𝐼𝑗}

((𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐸𝑄

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑇

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑏

𝐵𝐿
, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)

𝐿𝐵
, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)

𝑘

𝑀
) 𝑝(𝑖𝑗)

T
), 

max
𝑖𝑗∈{𝐼𝑗}

((𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐸𝑄

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑇

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐵𝐿

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐿𝐵

, 𝑢(𝑖𝑗 , 𝐸𝑃𝑉𝑗)
𝑘

𝑀
) 𝑝(𝑖𝑗)

T
)] 

Where 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐸𝑄

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑇

are the quantity of capital, building area of type b and tooling 

(respectively) required per step given the input alternative 𝑖𝑗 and the effective production volume of 

step j, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑘

𝑀
 is the quantity of material k required given the input alternative 𝑖𝑗 and the effective 

production volume of step j of step j. 𝑝(𝑖𝑗)
T

 is the transpose of the vector of (annualized) prices of 

capital, labor and material (with capital and labor costs possibly a function of 𝑖𝑗).  
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These terms correspond to the annual step level production cost given input alternative 𝑖𝑗: 

(𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐸𝑄

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑇

, 𝑢(𝑖𝑗 , 𝐸𝑃𝑉𝑗)
𝐵𝐿

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝐿𝐵

, 𝑢(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑘

𝑀
) 𝑝(𝑖𝑗)

T
= 𝐴𝐶(𝑖𝑗, 𝐸𝑃𝑉𝑗)

𝑗
 

Thus the range of overall production costs is given by: 

[∑ min
𝑖𝑗∈{𝐼𝑗}

(𝐴𝐶(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑗
)

𝑁

𝑗=1

, ∑ max
𝑖𝑗∈{𝐼𝑗}

(𝐴𝐶(𝑖𝑗, 𝐸𝑃𝑉𝑗)
𝑗
)

𝑁

𝑗=1

] 

As in 1.1, our process-based engineering model takes the annual production volume PV of the 

finished good as given, but 𝐸𝑃𝑉𝑗 is a function of both PV and the product of the yield rates 𝑦𝑛: Thus, for 

each production step in our process and the above optimizations, we set 𝐸𝑃𝑉𝑗 = 𝑃𝑉 ∏ 𝑦𝑛
𝑁
𝑛=𝑗+1  

independently of 𝑖𝑗 using the yield rates of baseline inputs (see section 6) to subsequent steps. 

By definition, the inputs that give us our interfirm variation in labor demand also produce a 

range of production costs that is a subset of our interfirm cost range: we illustrate from our empirical 

data that the range of production costs (at the median annual production volume of our industry 

sample) associated with our sequence of labor variation inputs is equal to or within the range associated 

with our sequence of cost variation inputs:

 

Figure 23 Cost Range Comparisons of Interfirm Labor and Cost Variation Inputs 

Appendix 1.3: Equations for Aggregation of Shifts in Skill Demand 

We calculate the change in jobs of a given skill level within a given skill type using the following 

equation: 

∆𝐽𝑡,𝑠(𝑋, 𝑌) = 𝐽𝑡,𝑠(𝑌) − 𝐽𝑡,𝑠(𝑋) 
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Where 𝐽𝑡,𝑠(𝑋) is the number of operator jobs requiring level s (e.g. skill level 1) of skill type t 

(e.g. operations in control) in scenario X.  We define ∆𝐽𝑇,𝑠(𝑋, 𝑌) as the change in operator jobs requiring 

skill level s when moving between scenario X and scenario Y. Following the scenario codes in section 4, 

the change in demand for low skill (skill level 1) cognitive (i.e. operations and control) operators under 

automation is thus the change in demand for low cognitive skill between low automation (scenario B1) 

and high automation (scenario B2): 

∆𝐿𝑜𝑤 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑆𝑘𝑖𝑙𝑙 𝐽𝑜𝑏𝑠: ∆𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,1(𝐵1, 𝐵2) = 𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,1(𝐵2) − 𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,1(𝐵1) 

∆𝐻𝑖𝑔ℎ 𝐶𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 𝑆𝑘𝑖𝑙𝑙 𝐽𝑜𝑏𝑠: ∆𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,5(𝐵1, 𝐵2) = 𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,5(𝐵2) − 𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,5(𝐵1) 

To calculate the change in demand for medium skill of a given type, we refer to the following 

equation where ∆𝐽𝑚(𝑋, 𝑌) is the change in number of operator jobs with medium skill requirements 

(skill level 2 through skill level 4): 

∆𝐽𝑡,𝑚(𝑋, 𝑌) = ∑ 𝐽𝑡,𝑠(𝑌) − 𝐽𝑡,𝑠(𝑋)

𝑠=4

𝑠=2

 

For example, the change in medium cognitive skill jobs under automation is given by: 

∆𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑚(𝐵1, 𝐵2) = ∑ 𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑠(𝐵2) − 𝐽𝑂𝑝𝑠 & 𝐶𝑜𝑛𝑡𝑟𝑜𝑙,𝑠(𝐵1)

𝑠=4

𝑠=2

 

To calculate changes in jobs within skill categories that contain multiple skill types, we refer to: 

∆𝐽𝑡,𝑠(𝑋, 𝑌) = ∑ 𝐽𝑡,𝑠(𝑋, 𝑌) | 𝑡 ∈ 𝐶 

Where ∆𝐽𝐶,𝑠(𝑋, 𝑌) is the change in jobs at skill level s within a skill category C.  The equation 

above is the change in jobs with skill level s in at least one of the skill types t in the category C (e.g. 

dexterity and near vision in physical skill). For example, the change in demand for low and high physical 

skills under automation is given by: 

∆𝐿𝑜𝑤 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑆𝑘𝑖𝑙𝑙 𝐽𝑜𝑏𝑠: ∆𝐽𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙,1(𝐵1, 𝐵2) = ∆𝐽𝑁𝑒𝑎𝑟 𝑉𝑖𝑠𝑖𝑜𝑛,1(𝐵1, 𝐵2) + ∆𝐽𝐷𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦,1(𝐵1, 𝐵2) 

∆𝐻𝑖𝑔ℎ 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑆𝑘𝑖𝑙𝑙 𝐽𝑜𝑏𝑠: ∆𝐽𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙,5(𝐵1, 𝐵2) = ∆𝐽𝑁𝑒𝑎𝑟 𝑉𝑖𝑠𝑖𝑜𝑛,1(𝐵1, 𝐵2) + ∆𝐽𝐷𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦,1(𝐵1, 𝐵2) 

To calculate the change in medium skill jobs within a skill category C, we refer to: 

∆𝐽𝐶,𝑚(𝑋, 𝑌) = ∑ 𝐽𝑡,𝑚(𝑋, 𝑌) | 𝑡 ∈ 𝐶 
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Where ∆𝐽𝐶,𝑚(𝑋, 𝑌) is the change in jobs at skill level m within skill category C. The equation 

above is the change in medium skill jobs across all skill types t in the category C (e.g. dexterity and near 

vision in physical skill). For example, the change in demand for medium physical skills under automation 

is given by: 

∆𝐽𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙,𝑚(𝐵1, 𝐵2) = ∆𝐽𝑁𝑒𝑎𝑟 𝑉𝑖𝑠𝑖𝑜𝑛,𝑚(𝐵1, 𝐵2) + ∆𝐽𝐷𝑒𝑥𝑡𝑒𝑟𝑖𝑡𝑦,𝑚(𝐵1, 𝐵2) 

Appendix 2: Data and Validation 

Appendix 2.1: Automation Level by Process Category and Automation Scenario 

Table 8 Taxonomy of Mechanical and Equipment Level of Automation (Frohm et al. 2008) 

Level of Automation Machinery and Equipment 

1 Totally physical – totally physical work, no tools are used, only the 
operators’ own muscle power. 

2 Static hand tool – physical work with support of static tool. (e.g. 
screwdriver) 

3 Flexible hand tool – physical work with support of flexible tool. (e.g. 
microscope) 

4 Automated hand tool – physical work with support of automated tool. (e.g. 
power screwdriver) 

5 Static machine/workstation – automatic work by machine that is designed 
for a specific task (e.g. curing oven) 

6 Flexible machine/workstation – automatic work by machine that can be 
reconfigured for different tasks (e.g. die attach machine) 

7 Totally automatic – totally automatic work; the machine solves all 
deviations or problems that occur by itself; autonomous systems. 

None of our process steps are “totally physical” or “totally automatic.” Most equipment in our 

study is in the 3 to 6 range, though some static hand tools exist (e.g. screwdrivers for packaging). Our 

per-step data includes detailed equipment descriptions (e.g. hand microscopes for visual inspection vs. 

automated testing tools or hand vs. power screwdrivers for physical assembly. In presenting results of 

the influence of technological change on physical and non-physical tasks, we aggregate levels 1-4 in the 

taxonomy as “physical”, and levels 5-7 as non-physical. We control for automation by matching input 

steps according to task, physical status and equipment description (e.g. Step 1 requires a microscope to 

physically inspect a part (level of adjustment 3) and must be matched with other inspection steps 

performed physically, using a microscope).  
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Appendix 2.2: Process Based Cost Model Inputs and Sample of Per Step Inputs 

Table 9 Other PBCM Inputs Collected 

Input Type Industry Sample 

Equipment and Tooling Inputs: Across 318 unique pieces of equipment and 108 unique tools 

Equipment Price 0 to $8,000,00 

Tooling Price $0 to $30,000 

Batch Size 1 to 34,000 

Yield Rate 85% to 100% 

Operation Time 0 to 44 hours 

Load/Unload Time 0 to 8.75 minutes 

Annual Downtime 5 days to 20 days 

Equipment Dedicated? True or False 

Labor Inputs: Across three categories of labor 

Supervisor to Operator Ratio N/A or 1:25 to 1:50 

Technician to Equipment Ratio N/A or 1:11 to 1:1 

Labor Dedicated? True or False 

Equipment to Operator Ratio 1:10 to 1.9 : 1 

Operator Wage $2.50 to $20.00 (varies by country) 

Supervisor Wage $6.00 to $30.00 (varies by country) 

Technician Wage $5.40 to $25.00 (varies by country) 

Material Inputs: Across 114 unique materials 

Material Price $0.00 to $31.00 per unit 

Facility Wide Inputs: Across 9 unique facilities 

Shift duration 8 to 12 hours 

Shifts per Day 1 to 3 

Facility-Wide Annual Downtime 0 to 2 weeks 

Values of 0 for an input indicate that there is no input of that type for a specific process step 

(e.g. $0.00 material price means no material input) or facility (e.g. 0 weeks Facility-Wide Annual 

Downtime). 

Appendix 2.3: Education, Training 

We find that operators with different levels of education (8-12 years) performed tasks with 

comparable equipment and process inputs (yields, cycle time, skill requirements). As our descriptive 

tables below illustrate, educational requirements and level of parts consolidation varied by region but 

were typically fixed at 8 or 12 years for all operators; operators in the United States, Europe and North 

America all required a high school education.  
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Table 10 Minimum Educational Requirements for Fabrication Operators 

 Low Parts 
consolidation 

Medium Parts 
consolidation 

High Parts 
consolidation 

Operator Share by 
Education 

Japan North America  
Controlled Scenario 
Only 8 Years 0% 0% 

12 Years 100% 100% 

 

Table 11 Minimum Educational Requirements for Assembly Operators 

 Low Parts consolidation Medium Parts consolidation High Parts 
consolidation 

Operator Share by 
Education 

China Developing 
East Asia 

North America 
And Europe 

China22  
Controlled Scenario 
Only 
 

8 Years 13%-16% 100%   10-15% 

12 Years 84%-87%  100% 100% 85-90% 

 

Appendix 2.4 Validation: 

In the following tables, we provide deidentified examples of empirical quantities of equipment 

and labor in our sample facilities for comparison with estimates produced by our models of those 

facilities. The models of individual production steps that underlie these facility-level estimates were then 

used to construct our counterfactuals. In Table 12 and Table 13, variation in our estimates of equipment 

and labor quantity was driven by differences in utilization assumptions, with the upper bound assuming 

that inputs dedicated to specific production steps and the lower bound assuming that equipment was 

shared across all production steps in which it was utilized, as well as within-firm variation in operational 

inputs (e.g. load and unload time); the baseline assumption was that inputs were shared across steps. 

We discussed cases of apparent over or under capacity in our estimates with firms both as a means of 

checking operational parameters (e.g. cycle time) and calibrating our utilization assumptions, including 

varying whether our baseline estimate reflected shared or dedicated capital. 

Table 12 Sample of Empirical Validations of Equipment Quantity Estimates 

Process 
Category 

Equipment 
Type 

Equipment Quantity in 
Sample Facility 

Estimated Equipment 
Required in Sample Facility 

Testing Burn-In 10 10 

Subassembly Wire Bond 4 3 to 4 (baseline 4) 

Subassembly Die Bond 8 6 to 9 (baseline 7) 

                                                           
22 Using low parts consolidation educational data to populate medium parts consolidation scenario. 
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Table 13 Sample of Empirical Validations of Labor Quantity Estimates 

Process 
Category 

Operator Quantity in 
Sample Facility 

Estimated Operators 
Required in Sample Facility 

All Assembly 220 190 to 235 (baseline: 212) 

Fabrication 50 48 to 64 (baseline: 48)  

To further validate our counterfactual scenarios, we also compared counterfactual unit cost 

estimates to our unit cost estimates of production within empirical facilities (we did not use firms’ 

estimate of unit cost as they did not necessarily include the same factors as our model). We find that 

unit productions costs in our counterfactuals overlap with our estimates of unit costs at empirical 

facilities for the range of annual production volumes shared by firms.   

Appendix 3: Results Not Shown in Main Body 

Appendix 3.1: Demand Distributions by Skill and Scenario 

3.1.1 Dexterity Requirements for Operators 

We observe that dexterity requirements skew upward from low to medium parts consolidation, 

reducing the lowest difficulty factor and increasing the absolute number (Figure 24) and share (Figure 

25) of operators at the highest skill factor (5), even as the total number of operators decreases. Further 

parts consolidation (under high automation) reduces both lower (level 2) and high skill requirements 

(level 5), driving a shift toward the center, as mid-level skill (i.e. level 3) operators increase in absolute 

terms (Figure 24) as well as proportionally (Figure 25). Automating the medium parts consolidation 

scenario, conversely, shifts operators toward lower skill requirements. The quantity of level 5 operators 

decreases in absolute and proportional terms, while levels 1, 3 and 4 are stable and level 2 operators 

increases in absolute and proportional terms. Not only do dexterity-intensive final assembly tasks persist 

from low to medium parts consolidation, greater failure and yield considerations appear to drive an 

upward skewing in skill requirements. Unlike under low to medium parts consolidation, parallel process 

flows are not merged (i.e. process steps eliminated by parts consolidation were already sequential) from 

medium to high parts consolidation. This suggests that yield considerations driving dexterity 

requirements in medium parts consolidation are unchanged, and the effect of high dexterity task 

elimination is dominant, driving down dexterity requirements overall. 
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Figure 24 Number of Operators by Scenario and Dexterity Requirement (Median APV) 

 

Figure 25 Share of Operators by Scenario and Dexterity Requirement (Median APV) 
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Figure 26 Aggregate Dexterity Skill Effects of Disaggregated Automation and Parts Consolidation: 
Shifting from Low Parts Consolidation, Low Automation to Medium Parts Consolidation, High 
Automation 

 

Figure 27 Aggregate Dexterity Skill Effects of Disaggregated Automation and Parts Consolidation: 
Shifting from Medium Parts Consolidation, Low Automation to High Parts Consolidation, High 
Automation 



56      Combemale, Whitefoot, Ales, Fuchs: Not all technology change is equal 

Please contact authors for updates before citing 
 

 

 

3.1.2. Near Vision Requirements for Operators 

The distribution of near vision requirements does not exhibit the same upward skewing with 

parts consolidation under low automation as dexterity. Both extremes of our observed difficulty 

distribution (levels 1 and 5) under low parts consolidation are reduced in absolute terms (Figure 28) and 

proportionally (Figure 29) moving from low to medium parts consolidation. Parts consolidation (medium 

to high) under the high automation scenario does not displace the proportion of operators by near 

vision skill beyond the range of interfirm efficiency variation. Meanwhile, the number of operators with 

more moderate skill requirements increases, even as total operators decrease. Automation under 

medium parts consolidation appears to drive down the near vision requirements for operators. The 

number (Figure 28) and share (Figure 29) of operators at skill level 1 increases even as we see decline in 

the proportion and number of operators at skill levels 2 and 3.  

Medium to high parts consolidation does not change the per-step skill requirements of 

production beyond the range of interfirm efficiency variation; while testing and subassembly labor 

decreases relative to final assembly, the combined near vision distributions of testing and subassembly 

resemble final assembly, offsetting these skill effects. 

 

Figure 28 Number of Operators by Scenario and Near Vision Requirement (Median APV) 
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Figure 29 Share of Operators by Scenario and Near Vision Requirement (Median APV)  

 

Figure 30 Aggregate Near Vision Skill Effects of Disaggregated Automation and Parts Consolidation: 
Shifting from Medium Parts Consolidation, Low Automation to High Parts Consolidation, High 
Automation 
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3.1.3. Operations and Control Requirements for Operators 

 

Figure 31 Share of Operators by Scenario and Operations and Control Requirement (Median APV) 

 

Figure 32 Operations and Control Skill Effects of Disaggregated Automation and Parts Consolidation: 
Shifting from Medium Parts Consolidation, Low Automation to High Parts Consolidation, High 
Automation 
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3.1.4: Distribution of Physical Labor: Physical Tasks Preserved under Parts consolidation 

The following figure displays the number of operators required for three operator categories at 

our median sample APV: those involved in nonphysical or partially physical assembly tasks, those 

involved in fully physical assembly tasks and those involved in fabrication tasks. While we perform 

equipment matching on both the fabrication and assembly side, we find “fully physical steps” (Level of 

Automation 1-4) only in assembly. 

 

Figure 33 Physical, Nonphysical Assembly Operators, Total Fabrication Operators 

This suggests a different relationship between parts consolidation and the elimination or 

substitution of labor requirements than automation; in this context, physical assembly tasks are typically 

associated with packaging and other elements of final assembly, which we note previously as being less 

susceptible to elimination through parts consolidation than subassembly, which tends to be more 

automated.  
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Appendix 3.2: Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill Level 

 

Figure 34 Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill Level under 
Automation 

 

Figure 35 Aggregate Change in Operator Jobs by Cognitive, Near Vision and Dexterity Skill Level under 
Parts Consolidation 

Appendix 3.3: Global Location of Jobs by Scenario 

In our empirical context, both automation and parts consolidation induce a net decrease in jobs 

per widget; however, the potential effect of automation and parts consolidation on product price and 

(in the future) performance may lead to equilibrium labor outcomes that do not necessarily reduce total 

jobs. The implications for jobs in market equilibrium are beyond the scope of this paper. Similarly, 

technological change such as increasing automation or parts consolidation could also change the 

geographic distribution of jobs. As shown in Fuchs and Kirchain 2010, Fuchs et al 2011, and Fuchs 2014; 

which design technologies are most profitable for firms can change with manufacturing location, and 
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particularly between developed and developing nations. In terms of the location of operator jobs, 

empirically, while we find low and high automated production lines in both developed and developing 

world, the highest levels of automation occur in the developed world. In our data, we only observe low 

parts consolidation production lines in the developing world, while we observe medium parts 

consolidation in both the developed and developing world. High parts consolidation—while not yet on 

the market—is likely only possible in the developed world in the near term (Vogelesang and Vlot 2000, 

Fuchs and Kirchain 2010, Fuchs, Kirchain and Liu 2011). Figure 36 maps the geographic location of the 

facilities in our empirical data to the geographic locations thus also represented in the production cost 

estimates of our design scenarios. 

 

Figure 36 Probable Global Location of Jobs by Production Stage and Scenario 

We expect the correlation between high parts consolidation and manufacturing in developed 

country locations as well as the correlation between parts consolidation and potential for higher 

performance to also apply to other manufacturing contexts.  Parts consolidation is pursued for both its 

production cost and performance advantages in multiple industries, including aerospace, and 

automotive (Carle et al 1999). Parts consolidation removes labor-intensive assembly steps, the cost 

advantages of which are higher in developed nations. Furthermore, parts consolidation often involves 

advanced materials and process developments that require continual interaction between technical 

experts and the production line (Bohn 1995, Pisano 1997, Bohn 2005, Lecuyer 2006, Fuchs and Kirchain 

2010, Bonnin-Roca et al 2017), and these experts are currently primarily located in developed countries 

(Fuchs and Kirchain 2010, NAS 2013). Past work has shown in both optoelectronic semiconductor (Fuchs 



62      Combemale, Whitefoot, Ales, Fuchs: Not all technology change is equal 

Please contact authors for updates before citing 
 

 

and Kirchain 2010) and automobile body (Fuchs et al 2011) contexts that the most parts consolidated 

designs, while having short to medium term performance advantages, are only profitable when 

manufactured in developed countries.  

We likewise expect highly automated manufacturing to be more attractive in developed 

contexts and to open up opportunities for higher product performance. With higher wages, the higher 

capital costs and lower labor implications of automation will have greater cost savings in developed 

country contexts. Automation can also open up opportunities for higher product performance, through 

higher precision and increased opportunities for subsequent innovation (Utterback and Abernathy 

1975). 

Online Supplement: 

An online supplement to this paper is available upon request.  
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